Data Provenance in Healthcare: Approaches, Challenges, and Future Directions

Journal article


Mansoor Ahmed (PhD), Amil Dar, Markus Helfert, Khan, A. and Jungsuk Kim 2023. Data Provenance in Healthcare: Approaches, Challenges, and Future Directions. Sensors. 23 (14), pp. 1-26. https://doi.org/10.3390/s23146495
AuthorsMansoor Ahmed (PhD), Amil Dar, Markus Helfert, Khan, A. and Jungsuk Kim
Abstract

Data provenance means recording data origins and the history of data generation and processing. In healthcare, data provenance is one of the essential processes that make it possible to track the sources and reasons behind any problem with a user’s data. With the emergence of the General Data Protection Regulation (GDPR), data provenance in healthcare systems should be implemented to give users more control over data. This SLR studies the impacts of data provenance in healthcare and GDPR-compliance-based data provenance through a systematic review of peer-reviewed articles. The SLR discusses the technologies used to achieve data provenance and various methodologies to achieve data provenance. We then explore different technologies that are applied in the healthcare domain and how they achieve data provenance. In the end, we have identified key research gaps followed by future research directions.

KeywordsData provenance ; healthcare ; provenance technologies; cryptography; ontologies; blockchain
Year2023
JournalSensors
Journal citation23 (14), pp. 1-26
PublisherMDPI
ISSN1424-8220
Digital Object Identifier (DOI)https://doi.org/10.3390/s23146495
Web address (URL)https://www.mdpi.com/1424-8220/23/14/6495
Output statusPublished
Publication dates18 Jul 2023
Publication process dates
Deposited24 Aug 2023
Permalink -

https://repository.derby.ac.uk/item/q03yz/data-provenance-in-healthcare-approaches-challenges-and-future-directions

  • 48
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Hybrid Non-Technical-Loss Detection in Fog-enabled Smart Grids
Khan, H. M., Jabeen, F., Khan, A., Badawi, S. A., Maple, C. and Jeon, G. 2024. Hybrid Non-Technical-Loss Detection in Fog-enabled Smart Grids. Sustainable Energy Technologies and Assessments. 65, pp. 1-9. https://doi.org/10.1016/j.seta.2024.103775
Privacy-Preserving V2I Communication and Secure Authentication Using ECC With Physical Unclonable Function
Nawaz, I., Ali Shah, M., Khan, A. and Jeon, S. 2024. Privacy-Preserving V2I Communication and Secure Authentication Using ECC With Physical Unclonable Function. Wireless Networks. pp. 1-16. https://doi.org/10.1007/s11276-024-03651-2
A Robust Internet of Drones Security Surveillance Communication Network Based on IOTA
Gilani, S. Y., Anjum, A., Khan, A., Khan, A., Syed, M. H., Moqurrab, S. A. and Srivastava, G. 2024. A Robust Internet of Drones Security Surveillance Communication Network Based on IOTA. Internet of Things. pp. 1-21. https://doi.org/10.1016/j.iot.2024.101066
Decentralized Receiver-based Link Stability-aware Forwarding Scheme for NDN-based VANETs
Zafar, W. U. I., Rehman, M. A. U., Jabeen, F., Ullah, R., Abbas, G. and Khan, A. 2023. Decentralized Receiver-based Link Stability-aware Forwarding Scheme for NDN-based VANETs. Computer Networks. 236, pp. 1-23. https://doi.org/10.1016/j.comnet.2023.109996
A Secure and Privacy Preserved Infrastructure for VANETs based on Federated Learning with Local Differential Privacy
Batool, H., Anjum, A., Khan, A., Izzo, S., Mazzocca, C. and Jeon, G. 2023. A Secure and Privacy Preserved Infrastructure for VANETs based on Federated Learning with Local Differential Privacy. Elsevier Information Sciences. 652. https://doi.org/10.1016/j.ins.2023.119717
Cohort-based kernel principal component analysis with Multi-path Service Routing in Federated Learning
Sikandar, H. S., Malik, S. R., Anjum, A., Khan, A. and Jeon, G. 2023. Cohort-based kernel principal component analysis with Multi-path Service Routing in Federated Learning. Future Generation Computer Systems. 149, pp. 518-530. https://doi.org/10.1016/j.future.2023.07.037
An Efficient and Privacy-preserving Blockchain-based Secure Data Aggregation in Smart Grids
Mahmood, A., Khan, A., Anjum, A., Maple, C. and Jeon, G. 2023. An Efficient and Privacy-preserving Blockchain-based Secure Data Aggregation in Smart Grids. Sustainable Energy Technologies and Assessments. 60, pp. 1-11. https://doi.org/10.1016/j.seta.2023.103414
Privacy Preservation in the Internet of Vehicles using Local Differential Privacy and IOTA Ledger
Iftikhar, Z., Anjum, A., Jeon, G., Shah, M. A. and Khan, A. 2023. Privacy Preservation in the Internet of Vehicles using Local Differential Privacy and IOTA Ledger. Springer Cluster Computing . pp. 1-17. https://doi.org/10.1007/s10586-023-04002-0
A Privacy-Enabled, Blockchain-Based Smart Marketplace
Bello Musa Yakubu, Majid Iqbal Khan, Khan, A., Adeel Anjum, Madiha Syed and Semeen Rehman 2023. A Privacy-Enabled, Blockchain-Based Smart Marketplace. Applied Sciences. 13 (5), pp. 1-16. https://doi.org/10.3390/app13052914
Blockchain-based DDoS attack mitigation protocol for device-to-device interaction in smart homes
Yakubu, M, Y., Khan, M. I., Khan, A., Jabeen, F. and Jeon, G. 2023. Blockchain-based DDoS attack mitigation protocol for device-to-device interaction in smart homes. Digital Communications and Networks. pp. 1-15. https://doi.org/10.1016/j.dcan.2023.01.013
Preserving Privacy of High-Dimensional Data by l-Diverse Constrained Slicing
Amin, Z., Anjum, A., Khan, A., Ahmad, A. and Jeon, G. 2022. Preserving Privacy of High-Dimensional Data by l-Diverse Constrained Slicing. Electronics. 11 (8), p. 1257. https://doi.org/10.3390/electronics11081257
Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches
Kanwal, T., Attaullaha, H., Anjum, A., Khan, A. and Jeon, G. 2022. Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches. Elsevier Digital Communications and Networks. pp. 1-16. https://doi.org/10.1016/j.dcan.2022.09.025
Fault-Tolerant Secure Data Aggregation Schemes in Smart Grids: Techniques, Design Challenges, and Future Trends
Khan, H. M., Khan, A., Khan, B. and Jeon, G. 2022. Fault-Tolerant Secure Data Aggregation Schemes in Smart Grids: Techniques, Design Challenges, and Future Trends. MDPI Energies. 15 (24), p. 9350.. https://doi.org/10.3390/en15249350