IOT-enabled fog-based secure aggregation in smart grids supporting data analytics

Journal article


Khan, H. M., Jabeen, F., Khan, A., Waqar, M. and Kim, A. 2025. IOT-enabled fog-based secure aggregation in smart grids supporting data analytics. Sensors. 25 (19), pp. 1-28. https://doi.org/10.3390/s25196240
AuthorsKhan, H. M., Jabeen, F., Khan, A., Waqar, M. and Kim, A.
Abstract

The Internet of Things (IoT) has transformed multiple industries, providing significant potential for automation, efficiency, and enhanced decision-making. The incorporation of IoT and data analytics in smart grid represents a groundbreaking opportunity for the energy sector, delivering substantial advantages in efficiency, sustainability, and cus-tomer empowerment. This integration enables smart grids to autonomously monitor energy flows and adjust to fluctuations in energy demand and supply in a flexible and real-time fashion. Statistical analytics, as a fundamental component of data analytics, provides the necessary tools and techniques to uncover patterns, trends, and insights within datasets. Nevertheless, it is crucial to address privacy and security issues to fully maximize the potential of data analytics in smart grids. This paper makes several sig-nificant contributions to the literature on secure, privacy-aware aggregation schemes in smart grids. First, we introduce a Fog-enabled Secure Data Analytics Operations (FESDAO) scheme which offers a distributed architecture incorporating robust security features such as secure aggregation, authentication, fault tolerance and resilience against insider threats. The scheme achieves privacy during data aggregation through a modified Boneh-Goh-Nissim cryptographic scheme along with other mechanisms. Second, FESDAO also supports statistical analytics on metering data at the cloud control center and fog node levels. FESDAO ensures reliable aggregation and accurate data analytical re-sults, even in scenarios where smart meters fail to report data, thereby preserving both analytical operation computation accuracy and latency. We further provide comprehen-sive security analyses to demonstrate that the proposed approach effectively supports data privacy, source authentication, fault tolerance, and resilience against false data injection and replay attacks. Lastly, we offer thorough performance evaluations to illustrate the efficiency of the suggested scheme in comparison to current state-of-the-art schemes, considering encryption, computation, aggregation, decryption, and communication costs. Moreover, a detailed security analysis has been conducted to verify the scheme’s re-sistance against insider collusion attacks, replay attack, and false data injection (FDI) attack.

Keywordsfog computing; privacy preservation; fault-tolerance; homomorphic encryption; BGN
Year2025
JournalSensors
Journal citation25 (19), pp. 1-28
PublisherMDPI
ISSN1424-8220
Digital Object Identifier (DOI)https://doi.org/10.3390/s25196240
Web address (URL)https://www.mdpi.com/1424-8220/25/19/6240
Accepted author manuscript
File Access Level
Restricted
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online08 Oct 2025
Publication process dates
Accepted30 Sep 2025
Deposited16 Oct 2025
Permalink -

https://repository.derby.ac.uk/item/v15y1/iot-enabled-fog-based-secure-aggregation-in-smart-grids-supporting-data-analytics

Download files


Publisher's version
sensors-25-06240.pdf
License: CC BY 4.0
File access level: Open

  • 48
    total views
  • 7
    total downloads
  • 20
    views this month
  • 3
    downloads this month

Export as

Related outputs

Location Privacy Schemes in Vehicular Networks: Taxonomy, Comparative Analysis, Design Challenges, and Future Opportunities
Ullah, I., Shah, M. A., Khan, A. and Guizani, M. 2025. Location Privacy Schemes in Vehicular Networks: Taxonomy, Comparative Analysis, Design Challenges, and Future Opportunities. ACM Computing Surveys. 57 (6), pp. 1-44. https://doi.org/10.1145/3711681
Hybrid Non-Technical-Loss Detection in Fog-enabled Smart Grids
Khan, H. M., Jabeen, F., Khan, A., Badawi, S. A., Maple, C. and Jeon, G. 2024. Hybrid Non-Technical-Loss Detection in Fog-enabled Smart Grids. Sustainable Energy Technologies and Assessments. 65, pp. 1-9. https://doi.org/10.1016/j.seta.2024.103775
Privacy-Preserving V2I Communication and Secure Authentication Using ECC With Physical Unclonable Function
Nawaz, I., Ali Shah, M., Khan, A. and Jeon, S. 2024. Privacy-Preserving V2I Communication and Secure Authentication Using ECC With Physical Unclonable Function. Wireless Networks. pp. 1-16. https://doi.org/10.1007/s11276-024-03651-2
A Robust Internet of Drones Security Surveillance Communication Network Based on IOTA
Gilani, S. Y., Anjum, A., Khan, A., Khan, A., Syed, M. H., Moqurrab, S. A. and Srivastava, G. 2024. A Robust Internet of Drones Security Surveillance Communication Network Based on IOTA. Internet of Things. pp. 1-21. https://doi.org/10.1016/j.iot.2024.101066
Improved angelization technique against background knowledge attack for 1:M microdata
Fazal, R., Khan, R., Anjum, A., Syed, M. H., Khan, A. and Rehman, S. 2023. Improved angelization technique against background knowledge attack for 1:M microdata. PeerJ. https://doi.org/10.7717/peerj-cs.1255
Decentralized Receiver-based Link Stability-aware Forwarding Scheme for NDN-based VANETs
Zafar, W. U. I., Rehman, M. A. U., Jabeen, F., Ullah, R., Abbas, G. and Khan, A. 2023. Decentralized Receiver-based Link Stability-aware Forwarding Scheme for NDN-based VANETs. Computer Networks. 236, pp. 1-23. https://doi.org/10.1016/j.comnet.2023.109996
A Secure and Privacy Preserved Infrastructure for VANETs based on Federated Learning with Local Differential Privacy
Batool, H., Anjum, A., Khan, A., Izzo, S., Mazzocca, C. and Jeon, G. 2023. A Secure and Privacy Preserved Infrastructure for VANETs based on Federated Learning with Local Differential Privacy. Elsevier Information Sciences. 652. https://doi.org/10.1016/j.ins.2023.119717
Cohort-based kernel principal component analysis with Multi-path Service Routing in Federated Learning
Sikandar, H. S., Malik, S. R., Anjum, A., Khan, A. and Jeon, G. 2023. Cohort-based kernel principal component analysis with Multi-path Service Routing in Federated Learning. Future Generation Computer Systems. 149, pp. 518-530. https://doi.org/10.1016/j.future.2023.07.037
An Efficient and Privacy-preserving Blockchain-based Secure Data Aggregation in Smart Grids
Mahmood, A., Khan, A., Anjum, A., Maple, C. and Jeon, G. 2023. An Efficient and Privacy-preserving Blockchain-based Secure Data Aggregation in Smart Grids. Sustainable Energy Technologies and Assessments. 60, pp. 1-11. https://doi.org/10.1016/j.seta.2023.103414
Data Provenance in Healthcare: Approaches, Challenges, and Future Directions
Mansoor Ahmed (PhD), Amil Dar, Markus Helfert, Khan, A. and Jungsuk Kim 2023. Data Provenance in Healthcare: Approaches, Challenges, and Future Directions. Sensors. 23 (14), pp. 1-26. https://doi.org/10.3390/s23146495
Privacy Preservation in the Internet of Vehicles using Local Differential Privacy and IOTA Ledger
Iftikhar, Z., Anjum, A., Jeon, G., Shah, M. A. and Khan, A. 2023. Privacy Preservation in the Internet of Vehicles using Local Differential Privacy and IOTA Ledger. Springer Cluster Computing . pp. 1-17. https://doi.org/10.1007/s10586-023-04002-0
A Privacy-Enabled, Blockchain-Based Smart Marketplace
Bello Musa Yakubu, Majid Iqbal Khan, Khan, A., Adeel Anjum, Madiha Syed and Semeen Rehman 2023. A Privacy-Enabled, Blockchain-Based Smart Marketplace. Applied Sciences. 13 (5), pp. 1-16. https://doi.org/10.3390/app13052914
Blockchain-based DDoS attack mitigation protocol for device-to-device interaction in smart homes
Yakubu, M, Y., Khan, M. I., Khan, A., Jabeen, F. and Jeon, G. 2023. Blockchain-based DDoS attack mitigation protocol for device-to-device interaction in smart homes. Digital Communications and Networks. pp. 1-15. https://doi.org/10.1016/j.dcan.2023.01.013
Preserving Privacy of High-Dimensional Data by l-Diverse Constrained Slicing
Amin, Z., Anjum, A., Khan, A., Ahmad, A. and Jeon, G. 2022. Preserving Privacy of High-Dimensional Data by l-Diverse Constrained Slicing. Electronics. 11 (8), p. 1257. https://doi.org/10.3390/electronics11081257
Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches
Kanwal, T., Attaullaha, H., Anjum, A., Khan, A. and Jeon, G. 2022. Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches. Elsevier Digital Communications and Networks. pp. 1-16. https://doi.org/10.1016/j.dcan.2022.09.025
Fault-Tolerant Secure Data Aggregation Schemes in Smart Grids: Techniques, Design Challenges, and Future Trends
Khan, H. M., Khan, A., Khan, B. and Jeon, G. 2022. Fault-Tolerant Secure Data Aggregation Schemes in Smart Grids: Techniques, Design Challenges, and Future Trends. MDPI Energies. 15 (24), p. 9350.. https://doi.org/10.3390/en15249350