Characterizing damage evolution of CF/PEKK composites under tensile loading through multi-instrument structural health monitoring techniques

Journal article


Yildirim, C., Emami Tabrizi, I., Al-Nadhari, a., Yildiz, M., Beylergil, B. and Topal, S. 2024. Characterizing damage evolution of CF/PEKK composites under tensile loading through multi-instrument structural health monitoring techniques. Composites Part A: Applied Science and Manufacturing. 175, pp. 1-14. https://doi.org/10.1016/j.compositesa.2023.107817
AuthorsYildirim, C., Emami Tabrizi, I., Al-Nadhari, a., Yildiz, M., Beylergil, B. and Topal, S.
Abstract

This study investigates the damage behavior of autoclave consolidated carbon fiber/Polyetherketoneketone (CF/PEKK) laminates manufactured by the automated fiber placement (AFP) lay-up process. The damage evaluation of autoclave consolidated samples is studied using a multi-instrument nondestructive monitoring approach. The effect of autoclave consolidation on the microstructure of the laminate is examined via void analysis based on density measurement, thermal analysis, and optical microscopy. The results reveal that the void content is achieved as 0.46% and there is 81.81% increase in the degree of crystallinity following the autoclave consolidation. Moreover, acoustic emission (AE), digital image correlation (DIC), and infrared thermography (IRT) results are cross-correlated to further understand the damage development. The evolution of clustered AE data during mechanical loading is used to divide the failure of the laminate into two stages, each of which signifies a different dominancy in failure modes. Scanning electron microscopy (SEM) is employed to associate damage characteristics with failure monitoring techniques.

KeywordsThermoplastic resin; Acoustic emission; Thermal analysis
Year2024
JournalComposites Part A: Applied Science and Manufacturing
Journal citation175, pp. 1-14
PublisherElsevier
ISSN1359-835X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.compositesa.2023.107817
Web address (URL)https://www.sciencedirect.com/science/article/abs/pii/S1359835X23003937
Output statusPublished
Publication dates
Online29 Sep 2023
Publication process dates
Accepted28 Sep 2023
Deposited25 Jul 2024
Permalink -

https://repository.derby.ac.uk/item/q74w5/characterizing-damage-evolution-of-cf-pekk-composites-under-tensile-loading-through-multi-instrument-structural-health-monitoring-techniques

  • 12
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures
Kefal, A., Emami Tabrizi, I., Tansan, M., Kisa, E. and Yildiz, M. 2024. An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures. Composite Structures. 258, pp. 1-20. https://doi.org/10.1016/j.compstruct.2020.113431
Comprehensive Analysis of Damage Progression in High-performance Thermoplastic Composites Through Multi-instrumental Structural Health Monitoring Approaches
Yildiz, M., Emami Tabrizi, I., Yildirim, C., Topal, S., Beylergil, B. and Al-Nadhari, A. 2024. Comprehensive Analysis of Damage Progression in High-performance Thermoplastic Composites Through Multi-instrumental Structural Health Monitoring Approaches. 21st European Conference on Composite Materials.
Towards automated characterisation of fatigue damage in composites using thermoelastic stress analysis
Lambert, P., Christian, W.J.R., Emami Tabrizi, I., Patterson, E.A., Middleton, C.A. and Przybyla, C. 2024. Towards automated characterisation of fatigue damage in composites using thermoelastic stress analysis. Composites Part A: Applied Science and Manufacturing. 183, pp. 1-10. https://doi.org/10.1016/j.compositesa.2024.108205
A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methods
Akgun , S., Senol, C.O., Kilic, G., Emami Tabrizi, I. and Yildiz, M. 2023. A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methods. Engineering fracture Mechanics. 286, pp. 1-15. https://doi.org/10.1016/j.engfracmech.2023.109291
An experimental multi-instrumental approach to understand the size effect on the damage propagation of plain-woven CFRP composites under shear loading
Yildiz, M., Ali, H.Q, Emami Tabrizi, I. and Awais Khan, R.M. 2023. An experimental multi-instrumental approach to understand the size effect on the damage propagation of plain-woven CFRP composites under shear loading. Journal of Composite Materials. 57 (5). https://doi.org/10.1177/00219983221148087
Buckling and fracture analysis of thick and long composite cylinders with cutouts under axial Compression: An experimental and numerical campaign
Wagner, H.N.R., Yildiz, M., Akalin, C., Emami Tabrizi, I., Huhne, C. and Ali, H.Q. 2023. Buckling and fracture analysis of thick and long composite cylinders with cutouts under axial Compression: An experimental and numerical campaign. Composite Structures. 324, pp. 1-15. https://doi.org/10.1016/j.compstruct.2023.117530
Comparing 3D Matrix Rich Zones in Ceramic Matrix Composites Using Orthogonal Decomposition
Emami Tabrizi, I., Christian, W.J.R., Patterson, E.A. and Przybyla, C. 2023. Comparing 3D Matrix Rich Zones in Ceramic Matrix Composites Using Orthogonal Decomposition. 17th International Conference on Advances in Experimental Mechanics.
The effect of additively and subtractively created center internal features on microstructure and mechanical performance of inconel-718 parts
Yildiz, M, Emami Tabrizi, I., Isik, M, Awais Khan, R.M., Aydogan, E. and Koc, B. 2023. The effect of additively and subtractively created center internal features on microstructure and mechanical performance of inconel-718 parts. Rapid Prototyping Journal. 30 (2), pp. 287-304. https://doi.org/10.1108/RPJ-12-2022-0420
Damage growth and failure detection in hybrid fiber composites using experimental in-situ optical strain measurements and smoothing element analysis
Emami Tabrizi, I., Kefal, A., Zanjani, J.S.M. and Yildiz, M. 2021. Damage growth and failure detection in hybrid fiber composites using experimental in-situ optical strain measurements and smoothing element analysis. International Journal of Damage Mechanics. 31 (4), pp. 479-507. https://doi.org/10.1177/10567895211045121
A new methodology for thermoelastic model identification in composite materials using digital image correlation
de Sá Rodrigues, F., Marques, R., Emami Tabrizi, I., Suleman, A., Yildiz, M., Kefal, A. and Ali, H.Q. 2021. A new methodology for thermoelastic model identification in composite materials using digital image correlation. Optics and lasers in Engineering. 146, pp. 1-17. https://doi.org/10.1016/j.optlaseng.2021.106689
Failure sequence determination in sandwich structures using concurrent acoustic emission monitoring and postmortem thermography
Emami Tabrizi, I., Oz, F.E., Mandal, S.K., Zanjani, J.S.M. and Yildiz, M. 2021. Failure sequence determination in sandwich structures using concurrent acoustic emission monitoring and postmortem thermography. Mechanics of Materials. 164, pp. 1-11. https://doi.org/10.1016/j.mechmat.2021.104113
A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental validation on composite structures
Kefal, A., Emami Tabrizi, I., Yildiz, M. and Tessler, A. 2020. A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental validation on composite structures. Mechanical Systems and Signal Processing. 152, pp. 1-34. https://doi.org/10.1016/j.ymssp.2020.107486
Microscopic analysis of failure in woven carbon fabric laminates coupled with digital image correlation and acoustic emission
Ali, H.Q., Emami Tabrizi, I., Awais Khan, R.M., Tufani, A. and Yildiz, M. 2019. Microscopic analysis of failure in woven carbon fabric laminates coupled with digital image correlation and acoustic emission. Composite Structures. 230, pp. 1-9. https://doi.org/10.1016/j.compstruct.2019.111515