Damage growth and failure detection in hybrid fiber composites using experimental in-situ optical strain measurements and smoothing element analysis

Journal article


Emami Tabrizi, I., Kefal, A., Zanjani, J.S.M. and Yildiz, M. 2021. Damage growth and failure detection in hybrid fiber composites using experimental in-situ optical strain measurements and smoothing element analysis. International Journal of Damage Mechanics. 31 (4), pp. 479-507. https://doi.org/10.1177/10567895211045121
AuthorsEmami Tabrizi, I., Kefal, A., Zanjani, J.S.M. and Yildiz, M.
Abstract

In previous study the failure initiation and development in hybrid fiber laminates was successfully monitored and determined. In current investigation a novel damage monitoring approach is proposed for hybrid laminates by combining different optical strain measurement techniques namely digital image correlation (DIC), fiber Bragg grating sensors (FBG) and infrared thermography (IRT) with smoothing element analysis (SEA). This viable experimental procedure eliminates the effects of global/local nature of optical strain measurement systems on heterogeneous damage accumulation and is a two-step approach. First, all optical sensing systems together with conventional strain gauges are utilized concurrently to indicate the differences in the measured strains and monitor damage accumulation under tensile loading. This demonstrates how failure events disturb the measurement capabilities of optical systems, which can cause a miscalculation of hybrid effect in hybrid-fiber laminates. The second step involves the utilization of SEA algorithm for discretely measured DIC displacements to predict a realistic continuous displacement/strain map and rigorously mitigate the inherent noise of the full field optical system. Remarkably, for large deformation states in hybrid composites, the combination of SEA/DIC enables early prediction of susceptible damage zones at stress levels 30% below material strength.

Keywordsdamage growth; hybrid fiber laminates; optical sensing systems
Year2021
JournalInternational Journal of Damage Mechanics
Journal citation31 (4), pp. 479-507
PublisherSAGE Journals
ISSN1056-7895
Digital Object Identifier (DOI)https://doi.org/10.1177/10567895211045121
Web address (URL)https://journals.sagepub.com/doi/10.1177/10567895211045121
Output statusPublished
Publication dates
Online06 Sep 2021
Publication process dates
Deposited22 Jul 2024
Permalink -

https://repository.derby.ac.uk/item/q74x5/damage-growth-and-failure-detection-in-hybrid-fiber-composites-using-experimental-in-situ-optical-strain-measurements-and-smoothing-element-analysis

  • 8
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures
Kefal, A., Emami Tabrizi, I., Tansan, M., Kisa, E. and Yildiz, M. 2024. An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures. Composite Structures. 258, pp. 1-20. https://doi.org/10.1016/j.compstruct.2020.113431
Comprehensive Analysis of Damage Progression in High-performance Thermoplastic Composites Through Multi-instrumental Structural Health Monitoring Approaches
Yildiz, M., Emami Tabrizi, I., Yildirim, C., Topal, S., Beylergil, B. and Al-Nadhari, A. 2024. Comprehensive Analysis of Damage Progression in High-performance Thermoplastic Composites Through Multi-instrumental Structural Health Monitoring Approaches. 21st European Conference on Composite Materials.
Characterizing damage evolution of CF/PEKK composites under tensile loading through multi-instrument structural health monitoring techniques
Yildirim, C., Emami Tabrizi, I., Al-Nadhari, a., Yildiz, M., Beylergil, B. and Topal, S. 2024. Characterizing damage evolution of CF/PEKK composites under tensile loading through multi-instrument structural health monitoring techniques. Composites Part A: Applied Science and Manufacturing. 175, pp. 1-14. https://doi.org/10.1016/j.compositesa.2023.107817
Towards automated characterisation of fatigue damage in composites using thermoelastic stress analysis
Lambert, P., Christian, W.J.R., Emami Tabrizi, I., Patterson, E.A., Middleton, C.A. and Przybyla, C. 2024. Towards automated characterisation of fatigue damage in composites using thermoelastic stress analysis. Composites Part A: Applied Science and Manufacturing. 183, pp. 1-10. https://doi.org/10.1016/j.compositesa.2024.108205
A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methods
Akgun , S., Senol, C.O., Kilic, G., Emami Tabrizi, I. and Yildiz, M. 2023. A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methods. Engineering fracture Mechanics. 286, pp. 1-15. https://doi.org/10.1016/j.engfracmech.2023.109291
An experimental multi-instrumental approach to understand the size effect on the damage propagation of plain-woven CFRP composites under shear loading
Yildiz, M., Ali, H.Q, Emami Tabrizi, I. and Awais Khan, R.M. 2023. An experimental multi-instrumental approach to understand the size effect on the damage propagation of plain-woven CFRP composites under shear loading. Journal of Composite Materials. 57 (5). https://doi.org/10.1177/00219983221148087
Buckling and fracture analysis of thick and long composite cylinders with cutouts under axial Compression: An experimental and numerical campaign
Wagner, H.N.R., Yildiz, M., Akalin, C., Emami Tabrizi, I., Huhne, C. and Ali, H.Q. 2023. Buckling and fracture analysis of thick and long composite cylinders with cutouts under axial Compression: An experimental and numerical campaign. Composite Structures. 324, pp. 1-15. https://doi.org/10.1016/j.compstruct.2023.117530
Comparing 3D Matrix Rich Zones in Ceramic Matrix Composites Using Orthogonal Decomposition
Emami Tabrizi, I., Christian, W.J.R., Patterson, E.A. and Przybyla, C. 2023. Comparing 3D Matrix Rich Zones in Ceramic Matrix Composites Using Orthogonal Decomposition. 17th International Conference on Advances in Experimental Mechanics.
The effect of additively and subtractively created center internal features on microstructure and mechanical performance of inconel-718 parts
Yildiz, M, Emami Tabrizi, I., Isik, M, Awais Khan, R.M., Aydogan, E. and Koc, B. 2023. The effect of additively and subtractively created center internal features on microstructure and mechanical performance of inconel-718 parts. Rapid Prototyping Journal. 30 (2), pp. 287-304. https://doi.org/10.1108/RPJ-12-2022-0420
A new methodology for thermoelastic model identification in composite materials using digital image correlation
de Sá Rodrigues, F., Marques, R., Emami Tabrizi, I., Suleman, A., Yildiz, M., Kefal, A. and Ali, H.Q. 2021. A new methodology for thermoelastic model identification in composite materials using digital image correlation. Optics and lasers in Engineering. 146, pp. 1-17. https://doi.org/10.1016/j.optlaseng.2021.106689
Failure sequence determination in sandwich structures using concurrent acoustic emission monitoring and postmortem thermography
Emami Tabrizi, I., Oz, F.E., Mandal, S.K., Zanjani, J.S.M. and Yildiz, M. 2021. Failure sequence determination in sandwich structures using concurrent acoustic emission monitoring and postmortem thermography. Mechanics of Materials. 164, pp. 1-11. https://doi.org/10.1016/j.mechmat.2021.104113
A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental validation on composite structures
Kefal, A., Emami Tabrizi, I., Yildiz, M. and Tessler, A. 2020. A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental validation on composite structures. Mechanical Systems and Signal Processing. 152, pp. 1-34. https://doi.org/10.1016/j.ymssp.2020.107486
Microscopic analysis of failure in woven carbon fabric laminates coupled with digital image correlation and acoustic emission
Ali, H.Q., Emami Tabrizi, I., Awais Khan, R.M., Tufani, A. and Yildiz, M. 2019. Microscopic analysis of failure in woven carbon fabric laminates coupled with digital image correlation and acoustic emission. Composite Structures. 230, pp. 1-9. https://doi.org/10.1016/j.compstruct.2019.111515