An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures

Journal article


Kefal, A., Emami Tabrizi, I., Tansan, M., Kisa, E. and Yildiz, M. 2024. An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures. Composite Structures. 258, pp. 1-20. https://doi.org/10.1016/j.compstruct.2020.113431
AuthorsKefal, A., Emami Tabrizi, I., Tansan, M., Kisa, E. and Yildiz, M.
Abstract

In this study, the inverse finite element method (iFEM) is experimentally applied to real-time displacement reconstruction of a moderately thick wing-shaped sandwich structure via a network of strain sensors. For this purpose, the iFEM algorithm is incorporated to the kinematic relations of refined zigzag theory (RZT) by considering laminate mechanics of the woven-fabric reinforcement. After a twill-woven wing-shaped structure is manufactured with embedded fiber Bragg grating sensors and surface mounted strain gauges/rosettes, the discrete real-time experimental strains are acquired from these sensors concurrently during a flexural test of the structure. This data is then processed by iFEM algorithm for full-field displacement and strain monitoring. Moreover, the displacement fields at the one edge of the sandwich structure is monitored by digital image correlation (DIC) system simultaneously. Furthermore, the reference displacement solutions are established by performing high-fidelity FEM analysis. Finally, the three-dimensional real-time deformations and strains obtained through iFEM approach show very good consistency when compared to the results of DIC/FEM analysis and experimental strains, respectively. Overall, the present study serves as a comprehensive experimental guidance of iFEM-based shape and strain sensing for its realistic implementation on large-scale composite structures and notably increases technology readiness level of the iFEM methodology.

KeywordsInverse finite element method; Structural health monitoring; Shape sensing
Year2024
JournalComposite Structures
Journal citation258, pp. 1-20
PublisherElseiver
ISSN0263-8223
Digital Object Identifier (DOI)https://doi.org/10.1016/j.compstruct.2020.113431
Web address (URL)https://www.sciencedirect.com/science/article/abs/pii/S0263822320333602
Output statusPublished
Publication dates
Online11 Dec 2020
Publication process dates
Accepted06 Dec 2020
Deposited25 Jul 2024
Permalink -

https://repository.derby.ac.uk/item/q74wy/an-experimental-implementation-of-inverse-finite-element-method-for-real-time-shape-and-strain-sensing-of-composite-and-sandwich-structures

  • 6
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Comprehensive Analysis of Damage Progression in High-performance Thermoplastic Composites Through Multi-instrumental Structural Health Monitoring Approaches
Yildiz, M., Emami Tabrizi, I., Yildirim, C., Topal, S., Beylergil, B. and Al-Nadhari, A. 2024. Comprehensive Analysis of Damage Progression in High-performance Thermoplastic Composites Through Multi-instrumental Structural Health Monitoring Approaches. 21st European Conference on Composite Materials.
Characterizing damage evolution of CF/PEKK composites under tensile loading through multi-instrument structural health monitoring techniques
Yildirim, C., Emami Tabrizi, I., Al-Nadhari, a., Yildiz, M., Beylergil, B. and Topal, S. 2024. Characterizing damage evolution of CF/PEKK composites under tensile loading through multi-instrument structural health monitoring techniques. Composites Part A: Applied Science and Manufacturing. 175, pp. 1-14. https://doi.org/10.1016/j.compositesa.2023.107817
Towards automated characterisation of fatigue damage in composites using thermoelastic stress analysis
Lambert, P., Christian, W.J.R., Emami Tabrizi, I., Patterson, E.A., Middleton, C.A. and Przybyla, C. 2024. Towards automated characterisation of fatigue damage in composites using thermoelastic stress analysis. Composites Part A: Applied Science and Manufacturing. 183, pp. 1-10. https://doi.org/10.1016/j.compositesa.2024.108205
A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methods
Akgun , S., Senol, C.O., Kilic, G., Emami Tabrizi, I. and Yildiz, M. 2023. A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methods. Engineering fracture Mechanics. 286, pp. 1-15. https://doi.org/10.1016/j.engfracmech.2023.109291
An experimental multi-instrumental approach to understand the size effect on the damage propagation of plain-woven CFRP composites under shear loading
Yildiz, M., Ali, H.Q, Emami Tabrizi, I. and Awais Khan, R.M. 2023. An experimental multi-instrumental approach to understand the size effect on the damage propagation of plain-woven CFRP composites under shear loading. Journal of Composite Materials. 57 (5). https://doi.org/10.1177/00219983221148087
Buckling and fracture analysis of thick and long composite cylinders with cutouts under axial Compression: An experimental and numerical campaign
Wagner, H.N.R., Yildiz, M., Akalin, C., Emami Tabrizi, I., Huhne, C. and Ali, H.Q. 2023. Buckling and fracture analysis of thick and long composite cylinders with cutouts under axial Compression: An experimental and numerical campaign. Composite Structures. 324, pp. 1-15. https://doi.org/10.1016/j.compstruct.2023.117530
The effect of additively and subtractively created center internal features on microstructure and mechanical performance of inconel-718 parts
Yildiz, M, Emami Tabrizi, I., Isik, M, Awais Khan, R.M., Aydogan, E. and Koc, B. 2023. The effect of additively and subtractively created center internal features on microstructure and mechanical performance of inconel-718 parts. Rapid Prototyping Journal. 30 (2), pp. 287-304. https://doi.org/10.1108/RPJ-12-2022-0420
Damage growth and failure detection in hybrid fiber composites using experimental in-situ optical strain measurements and smoothing element analysis
Emami Tabrizi, I., Kefal, A., Zanjani, J.S.M. and Yildiz, M. 2021. Damage growth and failure detection in hybrid fiber composites using experimental in-situ optical strain measurements and smoothing element analysis. International Journal of Damage Mechanics. 31 (4), pp. 479-507. https://doi.org/10.1177/10567895211045121
A new methodology for thermoelastic model identification in composite materials using digital image correlation
de Sá Rodrigues, F., Marques, R., Emami Tabrizi, I., Suleman, A., Yildiz, M., Kefal, A. and Ali, H.Q. 2021. A new methodology for thermoelastic model identification in composite materials using digital image correlation. Optics and lasers in Engineering. 146, pp. 1-17. https://doi.org/10.1016/j.optlaseng.2021.106689
Failure sequence determination in sandwich structures using concurrent acoustic emission monitoring and postmortem thermography
Emami Tabrizi, I., Oz, F.E., Mandal, S.K., Zanjani, J.S.M. and Yildiz, M. 2021. Failure sequence determination in sandwich structures using concurrent acoustic emission monitoring and postmortem thermography. Mechanics of Materials. 164, pp. 1-11. https://doi.org/10.1016/j.mechmat.2021.104113
A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental validation on composite structures
Kefal, A., Emami Tabrizi, I., Yildiz, M. and Tessler, A. 2020. A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental validation on composite structures. Mechanical Systems and Signal Processing. 152, pp. 1-34. https://doi.org/10.1016/j.ymssp.2020.107486
Microscopic analysis of failure in woven carbon fabric laminates coupled with digital image correlation and acoustic emission
Ali, H.Q., Emami Tabrizi, I., Awais Khan, R.M., Tufani, A. and Yildiz, M. 2019. Microscopic analysis of failure in woven carbon fabric laminates coupled with digital image correlation and acoustic emission. Composite Structures. 230, pp. 1-9. https://doi.org/10.1016/j.compstruct.2019.111515