Optimizing flexural performance of 3D fibre-reinforced composites with hybrid nano-fillers using response surface methodology (RSM)
Journal article
Authors | Hussain, M. Z., Shah, S. Z. H., Megat-Yusoff, P. S. M., Sharif, T. and Hussnanim, S. M. |
---|---|
Abstract | This study presents the flexural performance and damage mechanism of three-dimensional orthogonal woven E-glass/epoxy composites (3DOWC) modified with an innovative toughened epoxy resin using different weight percentages of Nanostrength® (NS: up to 7.5 wt%) and graphene nanoplatelets (GNP: up to 1.5 wt%). The Central Composite Design (CCD)-based Response Surface Methodology (RSM) was developed to optimize input parameters for maximum flexural strength, failure initiation load, and energy absorption. For single fillers, the composite with 0.5 wt% GNP showed an increase in flexural strength of up to 48.4% (warp), while with 7.5 wt% NS it increased by 39.3% (weft). The optimal weight percentages of hybrid nano-fillers in 3DOWC increase the flexural strength, along the warp and weft directions respectively, by up to 77.3% and 18.0% at 4.1 wt% NS and 0.5 wt% GNP; the failure initiation load by up to 42.5% and 28.9% at 4.7 wt% NS and 0.5 wt% GNP; and energy absorption by up to 13.4% and 9.6% at 7.5 wt% NS and 1.5 wt% GNP. Scanning electron microscopy (SEM) of damaged samples revealed that crack reconnection by GNP, fibril formation and plasticization by NS, and the combined effect of crack reconnection and plasticization by hybrid fillers improved the overall flexural performance of 3DOWC. This study significantly enhances the flexural performance of 3DOWC, making them ideal for high-strength, lightweight applications in the aerospace, automotive, and construction industries. |
Keywords | 3D-woven composites; nano-fillers; flexural performance; response surface methodology |
Year | 2025 |
Journal | Composites Part A: Applied Science and Manufacturing |
Journal citation | 190, pp. 1-20 |
Publisher | Elsevier |
ISSN | 1878-5840 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.compositesa.2025.108713 |
Web address (URL) | https://www.sciencedirect.com/science/article/pii/S1359835X25000077?via%3Dihub |
Accepted author manuscript | License File Access Level Open |
Output status | Published |
Publication dates | Mar 2025 |
Online | 04 Jan 2025 |
Publication process dates | |
Accepted | 04 Jan 2025 |
Deposited | 01 Apr 2025 |
https://repository.derby.ac.uk/item/qx173/optimizing-flexural-performance-of-3d-fibre-reinforced-composites-with-hybrid-nano-fillers-using-response-surface-methodology-rsm
Download files
1
total views2
total downloads1
views this month2
downloads this month
Export as
Related outputs
A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites
Odiyi, D.C., Sharif, T., Choudhry, R., Mallik, S. and S.Z.H. Shah 2023. A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites. Composites Part B: Engineering. 267, pp. 1-15. https://doi.org/10.1016/j.compositesb.2023.111034Bending performance and failure mechanisms of hybrid and regular sandwich composite structures with 3D printed corrugated cores
Shah, S.Z.H., Altaf, K., Lee, J., Sharif, T., Choudhry, R.S. and Hussain, R.S. 2023. Bending performance and failure mechanisms of hybrid and regular sandwich composite structures with 3D printed corrugated cores. Composite Structures. 325, pp. 1-15. https://doi.org/10.1016/j.compstruct.2023.117580
Bearing performance and damage characteristics of rein-infused thermoplastic 3D woven composites bolted joints
Shah, S. Z. H., Megat-Yusoff, P. S. M., Sharif, T., Hussnain, S. M. and Choudhry, R. S. 2023. Bearing performance and damage characteristics of rein-infused thermoplastic 3D woven composites bolted joints. Polymer Composites. pp. 1-31. https://doi.org/10.1002/pc.27802A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites
Odiyi, D., Sharif, T., Choudhry, R., Mallik, S. and Shah S.Z.H 2023. A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites. Composites Part B: Engineering. 267, pp. 1-15. https://doi.org/10.1016/j.compositesb.2023.111034Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects
Shah, S. Z. H., Lee, J., Megat-Yusoff, P.S.M., Hussain, S. Z., Sharif, T. and Choudhry, R. 2023. Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects. Composite Structures. 318, pp. 1-17. https://doi.org/10.1016/j.compstruct.2023.117109Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced composites
Shah, S.Z.H., Megat-Yusoff, P.S.M., Sharif, T., Hussain, S.Z. and Choudhry, R.S. 2022. Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced composites. Mechanics of Materials. 175, pp. 1-9. https://doi.org/10.1016/j.mechmat.2022.104478Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kinetics
Odiyi, D., Sharif, T., Choudhry, R.S. and Mallik, S. 2022. Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kinetics. Thermochimica Acta. 708, pp. 1-14. https://doi.org/10.1016/j.tca.2021.179133