Optimizing flexural performance of 3D fibre-reinforced composites with hybrid nano-fillers using response surface methodology (RSM)

Journal article


Hussain, M. Z., Shah, S. Z. H., Megat-Yusoff, P. S. M., Sharif, T. and Hussnanim, S. M. 2025. Optimizing flexural performance of 3D fibre-reinforced composites with hybrid nano-fillers using response surface methodology (RSM). Composites Part A: Applied Science and Manufacturing. 190, pp. 1-20. https://doi.org/10.1016/j.compositesa.2025.108713
AuthorsHussain, M. Z., Shah, S. Z. H., Megat-Yusoff, P. S. M., Sharif, T. and Hussnanim, S. M.
Abstract

This study presents the flexural performance and damage mechanism of three-dimensional orthogonal woven E-glass/epoxy composites (3DOWC) modified with an innovative toughened epoxy resin using different weight percentages of Nanostrength® (NS: up to 7.5 wt%) and graphene nanoplatelets (GNP: up to 1.5 wt%). The Central Composite Design (CCD)-based Response Surface Methodology (RSM) was developed to optimize input parameters for maximum flexural strength, failure initiation load, and energy absorption. For single fillers, the composite with 0.5 wt% GNP showed an increase in flexural strength of up to 48.4% (warp), while with 7.5 wt% NS it increased by 39.3% (weft). The optimal weight percentages of hybrid nano-fillers in 3DOWC increase the flexural strength, along the warp and weft directions respectively, by up to 77.3% and 18.0% at 4.1 wt% NS and 0.5 wt% GNP; the failure initiation load by up to 42.5% and 28.9% at 4.7 wt% NS and 0.5 wt% GNP; and energy absorption by up to 13.4% and 9.6% at 7.5 wt% NS and 1.5 wt% GNP. Scanning electron microscopy (SEM) of damaged samples revealed that crack reconnection by GNP, fibril formation and plasticization by NS, and the combined effect of crack reconnection and plasticization by hybrid fillers improved the overall flexural performance of 3DOWC. This study significantly enhances the flexural performance of 3DOWC, making them ideal for high-strength, lightweight applications in the aerospace, automotive, and construction industries.

Keywords3D-woven composites; nano-fillers; flexural performance; response surface methodology
Year2025
JournalComposites Part A: Applied Science and Manufacturing
Journal citation190, pp. 1-20
PublisherElsevier
ISSN1878-5840
Digital Object Identifier (DOI)https://doi.org/10.1016/j.compositesa.2025.108713
Web address (URL)https://www.sciencedirect.com/science/article/pii/S1359835X25000077?via%3Dihub
Accepted author manuscript
License
File Access Level
Open
Output statusPublished
Publication datesMar 2025
Online04 Jan 2025
Publication process dates
Accepted04 Jan 2025
Deposited01 Apr 2025
Permalink -

https://repository.derby.ac.uk/item/qx173/optimizing-flexural-performance-of-3d-fibre-reinforced-composites-with-hybrid-nano-fillers-using-response-surface-methodology-rsm

Download files


Accepted author manuscript
Author Accepted Manuscript.pdf
License: CC BY 4.0
File access level: Open

  • 1
    total views
  • 2
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Export as

Related outputs

A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites
Odiyi, D.C., Sharif, T., Choudhry, R., Mallik, S. and S.Z.H. Shah 2023. A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites. Composites Part B: Engineering. 267, pp. 1-15. https://doi.org/10.1016/j.compositesb.2023.111034
Bending performance and failure mechanisms of hybrid and regular sandwich composite structures with 3D printed corrugated cores
Shah, S.Z.H., Altaf, K., Lee, J., Sharif, T., Choudhry, R.S. and Hussain, R.S. 2023. Bending performance and failure mechanisms of hybrid and regular sandwich composite structures with 3D printed corrugated cores. Composite Structures. 325, pp. 1-15. https://doi.org/10.1016/j.compstruct.2023.117580
Bearing performance and damage characteristics of rein-infused thermoplastic 3D woven composites bolted joints
Shah, S. Z. H., Megat-Yusoff, P. S. M., Sharif, T., Hussnain, S. M. and Choudhry, R. S. 2023. Bearing performance and damage characteristics of rein-infused thermoplastic 3D woven composites bolted joints. Polymer Composites. pp. 1-31. https://doi.org/10.1002/pc.27802
A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites
Odiyi, D., Sharif, T., Choudhry, R., Mallik, S. and Shah S.Z.H 2023. A review of advancements in synthesis, manufacturing and properties of environment friendly biobased Polyfurfuryl Alcohol Resin and its Composites. Composites Part B: Engineering. 267, pp. 1-15. https://doi.org/10.1016/j.compositesb.2023.111034
Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects
Shah, S. Z. H., Lee, J., Megat-Yusoff, P.S.M., Hussain, S. Z., Sharif, T. and Choudhry, R. 2023. Multiscale damage modelling of notched and un-notched 3D woven composites with randomly distributed manufacturing defects. Composite Structures. 318, pp. 1-17. https://doi.org/10.1016/j.compstruct.2023.117109
Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced composites
Shah, S.Z.H., Megat-Yusoff, P.S.M., Sharif, T., Hussain, S.Z. and Choudhry, R.S. 2022. Off-axis tensile performance of notched resin-infused thermoplastic 3D fibre-reinforced composites. Mechanics of Materials. 175, pp. 1-9. https://doi.org/10.1016/j.mechmat.2022.104478
Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kinetics
Odiyi, D., Sharif, T., Choudhry, R.S. and Mallik, S. 2022. Cure mechanism and kinetic prediction of biobased glass/polyfurfuryl alcohol prepreg by model-free kinetics. Thermochimica Acta. 708, pp. 1-14. https://doi.org/10.1016/j.tca.2021.179133
Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures
Khan, Laraib Alam, Mahmood, Ali Hasan, Hassan, Bilal, Sharif, Tahir, Khushnod, Shahaab and Khan, Zaffar 2013. Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures. Polymer Composites. https://doi.org/10.1002/pc.22638