Reclaimed brick masonry waste recycling in macro–micro amelioration of cemented clayey soil: an eco-friendly construction waste solution

Journal article


Ahmad, A., Khalid, U., Rehman, Z. and Iqbal, M.J. 2025. Reclaimed brick masonry waste recycling in macro–micro amelioration of cemented clayey soil: an eco-friendly construction waste solution. Journal of Material Cycles and Waste Management. 27, pp. 1062-1083. https://doi.org/10.1007/s10163-025-02161-3
AuthorsAhmad, A., Khalid, U., Rehman, Z. and Iqbal, M.J.
Abstract

Reclaimed brick masonry makes up a noteworthy portion of construction and demolition waste (CDW), totaling approximately 31%, even exceeding concrete waste. This study proposes using reclaimed brick masonry to enhance the micro- and macro-properties of clayey soil. Extensive laboratory testing was conducted to evaluate the performance of reclaimed brick powder (BP) along with 5% cement content. The cement was used to generate chemical bonds with BP and soil grains. Micro-testing like XRF, XRD, EDAX, and SEM analyses confirmed the formation of CSH and CAH compounds which strengthened soil structure and enhanced its brittleness. However, after 10% BP, the addition of coarser grains converted the soil structure from dense to porous. Macro-properties assessment confirmed that 10% BP with 5% cement content is an optimum combination for selected soil. The addition of BP reduces the required amount of cement for soil stabilization, making it an eco-friendlier solution. The addition of the optimum combination decreased the wL, IP, FSI, wopt, and Cc and increased the γdmax, qu, CBR value, and σy significantly. It is also confirmed by the specimen’s failure morphology analysis that BP with cement in clayey soil curtailed cement generated brittleness and enhanced ductility.

KeywordsReclaimed brick masonry; construction; demolition
Year2025
JournalJournal of Material Cycles and Waste Management
Journal citation27, pp. 1062-1083
PublisherSpringer
ISSN1611-8227
Digital Object Identifier (DOI)https://doi.org/10.1007/s10163-025-02161-3
Web address (URL)https://link.springer.com/article/10.1007/s10163-025-02161-3
Accepted author manuscript
License
File Access Level
Open
Output statusPublished
Publication dates
Online02 Feb 2025
Publication process dates
Accepted13 Jan 2025
Deposited18 Mar 2025
Permalink -

https://repository.derby.ac.uk/item/qx333/reclaimed-brick-masonry-waste-recycling-in-macro-micro-amelioration-of-cemented-clayey-soil-an-eco-friendly-construction-waste-solution

  • 11
    total views
  • 5
    total downloads
  • 5
    views this month
  • 2
    downloads this month

Export as

Related outputs

Optimized machine learning-based enhanced modeling of pile bearing capacity in layered soils using random and grid search techniques
Arbi, S.J., Rehman, Z., Hassan, W., Khalid, U., Ijaz, N., Maqsood, Z. and Haider, A. 2025. Optimized machine learning-based enhanced modeling of pile bearing capacity in layered soils using random and grid search techniques. Earth Science Informatics. 18, pp. 1-22. https://doi.org/https://doi.org/10.1007/s12145-025-01784-2
Coupled effect of cyclic wet-dry environment and vibration event on desiccation crack and mechanical characteristics of polypropylene fiber-reinforced clay
Khalid, U., Rehman, Z. and Ahmad, A. 2025. Coupled effect of cyclic wet-dry environment and vibration event on desiccation crack and mechanical characteristics of polypropylene fiber-reinforced clay. Transportation Geotechnics. 51, pp. 1-14. https://doi.org/10.1016/j.trgeo.2025.101542
Big data-driven global modeling of cohesive soil compaction across conceptual and arbitrary energies through machine learning
Rehman, Z., Khalid, U., Ijaz, N. and Ijaz, Z. 2025. Big data-driven global modeling of cohesive soil compaction across conceptual and arbitrary energies through machine learning. Transportation Geotechnics. 50, pp. 1-23. https://doi.org/10.1016/j.trgeo.2024.101470
Optimizing subsurface geotechnical data integration for sustainable building infrastructure
Ijaz, N., Ijaz, Z., Rehman, Z., Ijaz, H., Ijaz, A. and Hamza, M. 2025. Optimizing subsurface geotechnical data integration for sustainable building infrastructure. Buildings. 15 (1), pp. 1-19. https://doi.org/10.3390/buildings15010140