Optimizing subsurface geotechnical data integration for sustainable building infrastructure

Journal article


Ijaz, N., Ijaz, Z., Rehman, Z., Ijaz, H., Ijaz, A. and Hamza, M. 2025. Optimizing subsurface geotechnical data integration for sustainable building infrastructure. Buildings. 15 (1), pp. 1-19. https://doi.org/10.3390/buildings15010140
AuthorsIjaz, N., Ijaz, Z., Rehman, Z., Ijaz, H., Ijaz, A. and Hamza, M.
Abstract

Sustainable building construction encounters challenges stemming from escalating expenses and time delays associated with geotechnical assessments. Developing and optimizing geotechnical soil maps (SMs) using existing data across heterogeneous geotechnical formations offer strategic and dynamic solutions. This strategic approach facilitates economical and prompt site evaluations, and offers preliminary ground models, enhancing efficient and sustainable building foundation design. In this framework, this paper aimed to develop SMs for the first time in the rapidly growing district of Gujrat using the optimal interpolation technique (OIT). The subsurface conditions were evaluated using the standard penetration test (SPT) N-values and soil classification including seismic wave velocity to account for seismic effects. Among the different geostatistical and geospatial models, the inverse distance weighting (IDW) model based on an optimized spatial analyst approach yielded the minimum error and a higher association with the field data for the understudy region. Overall, the optimized IDW technique yielded root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (CC) ranges between 0.57 and 0.98. Furthermore, analytical depth-dependent models were developed using SPT-N values to assess the bearing capacity, demonstrating the association of R2 > 0.95. Moreover, the study area was divided into three geotechnical zones based on the average SPT-N values. Comprehensive validation of different strata evaluation based on the optimal IDW for the SPT-N and soil type-based SMs revealed that the RMSE and MAE ranged between 0.36–1.65 and 0.30–0.59, while the CC ranged between 0.93 and 0.98 at multiple depths. The allowable bearing capacity (ABC) for spread footings was determined by evaluating the shear, settlement, and seismic factors. The study offers insights into regional variations in geotechnical formations along with shallow foundation design guidelines for practitioners and researchers working with similar soil conditions.

Keywordssustainable building foundations; geotechnical soil maps; standard penetration test; site characterization; bearing capacity
Year2025
JournalBuildings
Journal citation15 (1), pp. 1-19
PublisherMDPI
ISSN2075-5309
Digital Object Identifier (DOI)https://doi.org/10.3390/buildings15010140
Web address (URL)https://www.mdpi.com/2075-5309/15/1/140
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates05 Mar 2025
Publication process dates
Accepted26 Dec 2024
Deposited04 Mar 2025
Permalink -

https://repository.derby.ac.uk/item/qwxy0/optimizing-subsurface-geotechnical-data-integration-for-sustainable-building-infrastructure

Download files


Publisher's version
buildings-15-00140-v2.pdf
License: CC BY 4.0
File access level: Open

  • 9
    total views
  • 1
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Optimized machine learning-based enhanced modeling of pile bearing capacity in layered soils using random and grid search techniques
Arbi, S.J., Rehman, Z., Hassan, W., Khalid, U., Ijaz, N., Maqsood, Z. and Haider, A. 2025. Optimized machine learning-based enhanced modeling of pile bearing capacity in layered soils using random and grid search techniques. Earth Science Informatics. 18, pp. 1-22. https://doi.org/https://doi.org/10.1007/s12145-025-01784-2
Coupled effect of cyclic wet-dry environment and vibration event on desiccation crack and mechanical characteristics of polypropylene fiber-reinforced clay
Khalid, U., Rehman, Z. and Ahmad, A. 2025. Coupled effect of cyclic wet-dry environment and vibration event on desiccation crack and mechanical characteristics of polypropylene fiber-reinforced clay. Transportation Geotechnics. 51, pp. 1-14. https://doi.org/10.1016/j.trgeo.2025.101542
Big data-driven global modeling of cohesive soil compaction across conceptual and arbitrary energies through machine learning
Rehman, Z., Khalid, U., Ijaz, N. and Ijaz, Z. 2025. Big data-driven global modeling of cohesive soil compaction across conceptual and arbitrary energies through machine learning. Transportation Geotechnics. 50, pp. 1-23. https://doi.org/10.1016/j.trgeo.2024.101470
Reclaimed brick masonry waste recycling in macro–micro amelioration of cemented clayey soil: an eco-friendly construction waste solution
Ahmad, A., Khalid, U., Rehman, Z. and Iqbal, M.J. 2025. Reclaimed brick masonry waste recycling in macro–micro amelioration of cemented clayey soil: an eco-friendly construction waste solution. Journal of Material Cycles and Waste Management. 27, pp. 1062-1083. https://doi.org/10.1007/s10163-025-02161-3