Beyond polarity: forecasting consumer sentiment with aspect- and topic-conditioned time series models

Journal article


Sattar, U., Hasan, R., Palaniappan, S., Mahmood, S. and Khan, H. W. 2025. Beyond polarity: forecasting consumer sentiment with aspect- and topic-conditioned time series models. Information. 16 (8), pp. 1-20. https://doi.org/10.3390/info16080670
AuthorsSattar, U., Hasan, R., Palaniappan, S., Mahmood, S. and Khan, H. W.
Abstract

Existing approaches to social media sentiment analysis typically focus on static classification, offering limited foresight into how public opinion evolves. This study addresses that gap by introducing the Multi-Feature Sentiment-Driven Forecasting (MFSF) framework, a novel pipeline that enhances sentiment trend prediction by integrating rich contextual information from text. Using state-of-the-art transformer models on the Sentiment140 dataset, our framework extracts three concurrent signals from each tweet: sentiment polarity, aspect-based scores (e.g., ‘price’ and ‘service’), and topic embeddings. These features are aggregated into a daily multivariate time series. We then employ a SARIMAX model to forecast future sentiment, using the extracted aspect and topic data as predictive exogenous variables. Our results, validated on the historical Sentiment140 Twitter dataset, demonstrate the framework’s superior performance. The proposed multivariate model achieved a 26.6% improvement in forecasting accuracy (RMSE) over a traditional univariate ARIMA baseline. The analysis confirmed that conversational aspects like ‘service’ and ‘quality’ are statistically significant predictors of future sentiment. By leveraging the contextual drivers of conversation, the MFSF framework provides a more accurate and interpretable tool for businesses and policymakers to proactively monitor and anticipate shifts in public opinion.

Keywordssentiment analysis; time-series forecasting; consumer behavior; Natural Language Processing; transformer models; SARIMAX; exogenous variables; aspect extraction
Year2025
JournalInformation
Journal citation16 (8), pp. 1-20
PublisherMDPI
ISSN2078-2489
Digital Object Identifier (DOI)https://doi.org/10.3390/info16080670
Web address (URL)https://www.mdpi.com/2078-2489/16/8/670
Accepted author manuscript
File Access Level
Restricted
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online06 Aug 2025
Publication process dates
Accepted04 Aug 2025
Deposited12 Aug 2025
Permalink -

https://repository.derby.ac.uk/item/qz2q1/beyond-polarity-forecasting-consumer-sentiment-with-aspect-and-topic-conditioned-time-series-models

Download files


Publisher's version
information-16-00670.pdf
License: CC BY 4.0
File access level: Open

  • 481
    total views
  • 11
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Artificial intelligence for enhanced quality assurance through advanced strategies and implementation in the software industry
Vivekananthan, J., Sattar, U. and Lackner, M. 2025. Artificial intelligence for enhanced quality assurance through advanced strategies and implementation in the software industry. Journal of Intelligent Systems. 34 (1), pp. 1-19. https://doi.org/10.1515/jisys-2024-0377
Adopting open-source SD-WAN: a comprehensive analysis of performance, cost, and security benefits over traditional WAN architectures
Arogundade, S. V., Sattar, U. and Khan, H. W. 2025. Adopting open-source SD-WAN: a comprehensive analysis of performance, cost, and security benefits over traditional WAN architectures. EAI Endorsed Transactions on Scalable Information Systems. 12 (4). https://doi.org/10.4108/eetsis.7217
Predicting product sales performance using various types of customer review data
Baskaran, J., Sattar, U. and Khan, H. W. 2025. Predicting product sales performance using various types of customer review data. EAI Endorsed Transactions on Scalable Information Systems. 12 (4), pp. 1-11. https://doi.org/10.4108/eetsis.7216
From promotion to empathy: a content analysis of brand responses to social justice movements
Dilshad, W., Sattar, U. and Ghaffar, A. 2025. From promotion to empathy: a content analysis of brand responses to social justice movements. Bulletin of Management Review . 2 (2), p. 440–453.
Enhancing supply chain management: a comparative study of machine learning techniques with cost–accuracy and esg-based evaluation for forecasting and risk mitigation
Sattar, U., Dattana, V., Hasan, R., Mahmood, S., Khan, H. W. and Hussain, S. 2025. Enhancing supply chain management: a comparative study of machine learning techniques with cost–accuracy and esg-based evaluation for forecasting and risk mitigation. Sustainability. 17 (13), pp. 1-45. https://doi.org/10.3390/su17135772
Exploring the impact of augmented reality on medical students’ intrinsic motivation: a three-dimensional analysis
Sattar, U., Khan, H. W., Ghaffar, A. and Raza, S. 2025. Exploring the impact of augmented reality on medical students’ intrinsic motivation: a three-dimensional analysis. Journal of Management & Social Science. 2 (2), pp. 257-276. https://doi.org/10.63075/dt4f4h66
Enhancing customer segmentation through factor analysis of mixed data (FAMD)-based approach using K-means and hierarchical clustering algorithms
Sattar, U., Ufeli, C. P., Hasan, R. and Mahmood, S. 2025. Enhancing customer segmentation through factor analysis of mixed data (FAMD)-based approach using K-means and hierarchical clustering algorithms. information. 16 (6), pp. 1-25. https://doi.org/10.3390/info16060441
Stroke detection in brain CT images using convolutional neural networks: model development, optimization and interpretability
Abdi, H., Sattar, U., Dattana, V., Hasan, R., Dattana, V. and Mahmood, S. 2025. Stroke detection in brain CT images using convolutional neural networks: model development, optimization and interpretability. Information. 16 (5), pp. 1-29. https://doi.org/10.3390/info16050345
Mitigating fuel station drive-offs using AI: YOLOv8 OCR and MOT history API for detecting fake and altered plates
Milinda, G., Sattar, U. and Hasan, R. 2025. Mitigating fuel station drive-offs using AI: YOLOv8 OCR and MOT history API for detecting fake and altered plates. Computers, Materials & Continua. 83 (3), pp. 4061-4084. https://doi.org/10.32604/cmc.2025.062826
A human-centered design framework for intuitive mobile AR in medical learning
Sattar, U., Khan, H., Hasan, R. and Hassan, A. 2025. A human-centered design framework for intuitive mobile AR in medical learning. UMT Education Review. 7 (2), p. 94–122. https://doi.org//10.32350/uer.72.05