Molecular solar thermal energy storage system based functional devices

Book chapter


Wang, Z. 2025. Molecular solar thermal energy storage system based functional devices. in: Moth-Poulsen, K. (ed.) Molecular Solar Thermal Energy Storage Systems Cham Springer. pp. 169–192
AuthorsWang, Z.
EditorsMoth-Poulsen, K.
Abstract

The increasing global energy demand, coupled with the detrimental environmental effects of fossil fuel dependence, has made the development of alternative energy storage systems a critical priority. Among the various renewable energy technologies, solar energy emerges as a promising solution due to its abundance, inexhaustibility, and lack of greenhouse gas emissions during operation. However, efficient and reliable storage of solar energy remains a significant challenge. Molecular solar thermal energy storage (MOST) systems offer an innovative approach by capturing solar energy at the molecular level. MOST systems rely on organic photoswitchable molecules that store solar energy in chemical bonds, which can later be released as heat on-demand. These systems combine high energy density with long-term stability, making them a viable option for sustainable energy storage. This chapter delves into the design strategies and challenges associated with MOST-based functional devices, highlighting experimental insights and case studies that span from lab-scale demonstrations to potential upscaled applications. By emphasising intuitive MOST-based device designs and their integration with other existing technologies for hybrid applications, this exploration seeks to inspire advancements in the development of next-generation MOST systems.

Page range169–192
Year2025
Book title Molecular Solar Thermal Energy Storage Systems
PublisherSpringer
Place of publicationCham
SeriesAdvances in Atom and Single Molecule Machines
ISBN9783032016157
Digital Object Identifier (DOI)https://doi.org/10.1007/978-3-032-01616-4_8
File
File Access Level
Controlled
Output statusPublished
Publication dates
Online18 Oct 2025
Publication process dates
Deposited23 Oct 2025
Permalink -

https://repository.derby.ac.uk/item/v1q72/molecular-solar-thermal-energy-storage-system-based-functional-devices

Restricted files

File

  • 25
    total views
  • 3
    total downloads
  • 25
    views this month
  • 3
    downloads this month

Export as

Related outputs

Surfactant-enabled strategy for molecular solar thermal energy storage systems in water
Fernandez, L., Hölzel, H., Ferreira, P., Baggi, N., Moreno, K., Wang, Z. and Moth-Poulsen, K. 2025. Surfactant-enabled strategy for molecular solar thermal energy storage systems in water. Green Chemistry.
Reusable and closed-loop recyclable underwater adhesives via printable multi-dynamic networks
Wang, S., Wu, X., Li, J., Zhao, J., Wang, S., Sun, Y., Wang, Z. and Xu, X. 2025. Reusable and closed-loop recyclable underwater adhesives via printable multi-dynamic networks. Chemical Engineering Journal.
Influence of surfactant–cosurfactant ratios on the morphology of vaterite microparticles in Inverse microemulsions
Hu, M, Wang, K, Zuo, J, Jevric, M, Feng, J, Wang, Z. and Wang, N 2025. Influence of surfactant–cosurfactant ratios on the morphology of vaterite microparticles in Inverse microemulsions. ChemistrySelect. 10 (36). https://doi.org/10.1002/slct.202504254
3D-printed hygroscopic matrices based on granular hydrogels for atmospheric water adsorption and on-demand defogging
Wu, X., Wang, S., Zhao, J., Li, J., Sun, Y., Wang, Z., Murto, O., Cui, H. and Xu, X. 2025. 3D-printed hygroscopic matrices based on granular hydrogels for atmospheric water adsorption and on-demand defogging. Advanced Functional Materials. https://doi.org/10.1002/adfm.202514721
Reversible dual stimuli-responsive polymer coatings with antimicrobial properties for oil–water separation
Wang, N., Wang, H., Wang, K., Zuo, J. and Wang, Z. 2025. Reversible dual stimuli-responsive polymer coatings with antimicrobial properties for oil–water separation. Journal of Water Process Engineering. 77. https://doi.org/10.1016/j.jwpe.2025.108484
Spectrally-tailored hygroscopic hydrogels with Janus interfaces for hybrid passive cooling of solar cells
Li, S., Wang, S., Zhao, J., Wang, Z., Murto, P., Yu, L., Chen, J. and Xu, X. 2025. Spectrally-tailored hygroscopic hydrogels with Janus interfaces for hybrid passive cooling of solar cells. Small. https://doi.org/10.1002/smll.202505647
Kinetic investigations on the fading reaction between MX and SDS at concentrations below and above the critical micellar concentration
Zuo, J., Liu, G., Wang, K., Wang, Z. and Wang, N. 2025. Kinetic investigations on the fading reaction between MX and SDS at concentrations below and above the critical micellar concentration. ChemistrySelect. 10 (22). https://doi.org/10.1002/slct.202501841
Simulation-guided design of solar steam generator arrays for efficient all-cold evaporation under natural sunlight
Shao, K., Li, J., Zhao, J., Wang, S., Lu, Y, Murto, P., Wang, Z. and Xu, X. 2025. Simulation-guided design of solar steam generator arrays for efficient all-cold evaporation under natural sunlight. 17 (7). https://doi.org/10.1021/acsami.5c04498
Synergistic solar-powered water-electricity generation using a 3D-printed heatsink-like device
Li, N., He, J., Li, J., Li, Z., Murto, P., Wang, Z. and Xu, X. 2025. Synergistic solar-powered water-electricity generation using a 3D-printed heatsink-like device. EES Solar. https://doi.org/10.1039/D4EL00041B
Tailor-Made Hygroscopic Photothermal Organogels for Moisture Management and Evaporative Cooling through a 1D-to-3D Design
Wang, Y., Li, S., Li, J., Sun, Y., Li, Z., Murto, P., Wang, Z. and Xu, X. 2025. Tailor-Made Hygroscopic Photothermal Organogels for Moisture Management and Evaporative Cooling through a 1D-to-3D Design. Journal of Materials Chemistry A. 6. https://doi.org/10.1039/D4TA07811J
Photoresponsive Surfactants for Controllable and Reversible Emulsion Systems
Xue, H., Han, Y., Liu, G., Chen, W., Wang, Z. and Wang, N. 2024. Photoresponsive Surfactants for Controllable and Reversible Emulsion Systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 705 (1), pp. 1-9. https://doi.org/10.1016/j.colsurfa.2024.135669
Two-way photoswitching norbornadiene derivatives for solar energy storage
Liang Fei, Helen Hölzel, Zhihang Wang, Andreas Erbs Hillers-Bendtsen, Adil S. Aslam, Monika Shamsabadi, Jialing Tan, Kurt V. Mikkelsen, Chaoxia Wang and Kasper Moth-Poulsen 2024. Two-way photoswitching norbornadiene derivatives for solar energy storage. Chemical Science. (15), pp. 18179-18186. https://doi.org/10.1039/d4sc04247f