Anti-predation strategy, growth rate and extinction amongst Pliocene scallops of the US eastern seaboard

Conference Presentation


Johnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Sloane, Hilary J., Schoene, Bernd and Surge, Donna 2017. Anti-predation strategy, growth rate and extinction amongst Pliocene scallops of the US eastern seaboard.
AuthorsJohnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Sloane, Hilary J., Schoene, Bernd and Surge, Donna
TypeConference Presentation
Abstract

Placopecten, Chesapecten and Carolinapecten are scallop (pectinid bivalve) genera occurring in the Pliocene of the US eastern seaboard. The first, present in the area today, is a smooth, streamlined form, adept at escaping predators by swimming (‘flight’ strategy). The other two, which are extinct, are plicate (‘ribbed’) forms. Plication facilitates a ‘resistance’ strategy towards predators which is benefited by large size and high shell thickness - maximally so if these states are achieved early in life. Oxygen isotope (δ18O) profiles show that early ontogenetic extensional growth in Pliocene Placopecten was at the same moderate rate as in modern Placopecten. By contrast, in Chesapecten it was as fast as in the fastest-growing modern scallop (c. 80 mm/annum), and accompanied by development of an unusually thick shell, while in Carolinapecten it was substantially faster still (<140 mm/annum). Rapid growth in Chesapecten and Carolinapecten may have been enabled by high primary productivity, which is indicated by the abundance, diversity and large size of co-occurring vertebrates. The extinction of Chesapecten and Carolinapecten, and the survival of Placopecten, can be attributed to a decline in primary productivity which prevented a maximally effective ‘resistance’ strategy towards predators but had no deleterious impact on a ‘flight’ strategy.

KeywordsExtinction; Pliocene; Scerochronology; Growth rate; Palaeoproductivity; Palaeotemperature
Year2017
Web address (URL)http://hdl.handle.net/10545/621801
hdl:10545/621801
File
File Access Level
Open
Publication dates07 Jul 2017
Publication process dates
Deposited03 Aug 2017, 15:08
ContributorsUniversity of Derby, University of Loughborough, British Geological Survey, University of Mainz and University of North Carolina at Chapel Hill
Permalink -

https://repository.derby.ac.uk/item/92630/anti-predation-strategy-growth-rate-and-extinction-amongst-pliocene-scallops-of-the-us-eastern-seaboard

Download files


File
license.txt
File access level: Open

  • 11
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Raw data for “Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications”, Version 1
Johnson, ALA, Valentine AM, Schoene BR, Leng MJ, Sloane HJ and Goolaerts S Raw data for “Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications”, Version 1. Zenodo. https://doi.org/10.5281/zenodo.5585630
The potential of high-resolution stable isotope records in the bivalve Angulus benedeni benedeni's shells to investigate Pliocene seasonality
Wichern, N., de Winter, N., Ziegler, M., Johnson, A., Hamers, M. and Goolaerts, S. 2022. The potential of high-resolution stable isotope records in the bivalve Angulus benedeni benedeni's shells to investigate Pliocene seasonality. European Geosciences Union, General Assembly. European Geosciences Union. https://doi.org/10.5194/egusphere-egu22-4634
Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, Stijn Goolaerts and Johnson, A. 2022. Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications. Climate of the Past. 18 (5), pp. 1-49. https://doi.org/10.5194/cp-18-1203-2022
Sclerochronological evidence of pronounced seasonality from the Pliocene of the southern North Sea Basin, and its implication
Johnson A, Valentine A, Leng M, Schoene B, Sloane H and Goolaerts S 2021. Sclerochronological evidence of pronounced seasonality from the Pliocene of the southern North Sea Basin, and its implication. European Geosciences Union, General Assembly. European Geosciences Union. https://doi.org/10.5194/egusphere-egu21-7247
Seasonal variability in a warming climate: Lessons from the Pliocene Warm Period and beyond
de Winter N, Wichern N, Franke J, de Gier L, Goolaerts S, Johnson, A. and Ziegler M 2021. Seasonal variability in a warming climate: Lessons from the Pliocene Warm Period and beyond. American Geosciences Union, Fall Meeting. American Geophysical Union (AGU).
Growth rate, extinction and survival amongst late Cenozoic bivalves of the North Atlantic
Johnson, Andrew L. A., Harper, Elizabeth M., Clarke, Abigail, Featherstone, Aaron C., Heywood, Daniel J., Richardson, Kathryn E., Spink, Jack O. and Thornton, Luke A.H. 2019. Growth rate, extinction and survival amongst late Cenozoic bivalves of the North Atlantic. Historical Biology. https://doi.org/10.1080/08912963.2019.1663839
Life history, environment and extinction of the scallop Carolinapecten eboreus (Conrad) in the Plio-Pleistocene of the U.S. eastern seaboard.
Johnson, Andrew L. A., Valentine, Annemarie M., Leng, Melanie J., Schöne, Bernd R. and Sloane, Hilary J. 2019. Life history, environment and extinction of the scallop Carolinapecten eboreus (Conrad) in the Plio-Pleistocene of the U.S. eastern seaboard. Palaios. https://doi.org/10.2110/palo.2018.056
Marine climate and hydrography of the Coralline Crag (early Pliocene, UK): isotopic evidence from 16 benthic invertebrate taxa.
Vignols, Rebecca M., Valentine, Annemarie M., Finlayson, Alana G., Harper, Elizabeth M., Schöne, Bernd R., Leng, Melanie J., Sloane, Hilary J. and Johnson, Andrew L. A. 2018. Marine climate and hydrography of the Coralline Crag (early Pliocene, UK): isotopic evidence from 16 benthic invertebrate taxa. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2018.05.034
Environment and extinction in the late Cenozoic of the North Atlantic area - insights from sclerochronology
Johnson, Andrew L. A. 2017. Environment and extinction in the late Cenozoic of the North Atlantic area - insights from sclerochronology.
Growth rate and extinction amongst Plio-Pleistocene bivalve molluscs of the western and eastern North Atlantic region
Clarke, Abigail, Featherstone, Aaron, Heywood, Daniel, Thornton, Luke, Richardson, Kathryn and Johnson, Andrew L. A. 2017. Growth rate and extinction amongst Plio-Pleistocene bivalve molluscs of the western and eastern North Atlantic region.
Anti-predation strategy, growth rate and extinction amongst Pliocene scallops of the US eastern seaboard
Johnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Sloane, Hilary J., Schoene, Bernd and Surge, Donna 2017. Anti-predation strategy, growth rate and extinction amongst Pliocene scallops of the US eastern seaboard.
Seasonally resolved isotopic temperature data as a tool for identifying the cause of marine climate change in the Pliocene
Johnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Sloane, Hilary J., Schoene, Bernd and Surge, Donna 2017. Seasonally resolved isotopic temperature data as a tool for identifying the cause of marine climate change in the Pliocene.
Isotopic temperatures from the early and mid-pliocene of the US Middle Atlantic coastal plain, and their implications for the cause of regional marine climate change
Johnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Sloane, Hilary J., Schöne, Bernd R. and Balson, Peter S. 2017. Isotopic temperatures from the early and mid-pliocene of the US Middle Atlantic coastal plain, and their implications for the cause of regional marine climate change. Palaios. https://doi.org/10.2110/palo.2016.080
The use of seasonally resolved temperature data to identify the cause of marine climate change
Johnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Sloane, Hilary J., Schöne, Bernd R. and Surge, Donna 2017. The use of seasonally resolved temperature data to identify the cause of marine climate change. European Geosciences Union.
Anti-predation strategy, growth rate and extinction amongst Pliocene scallops of the US eastern seaboard
Johnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Sloane, Hilary J., Schöne, Bernd R. and Surge, Donna 2017. Anti-predation strategy, growth rate and extinction amongst Pliocene scallops of the US eastern seaboard. European Geosciences Union.
Evidence, cause and consequence of exceptionally rapid growth in Pliocene scallops of the US eastern seaboard
Johnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Sloane, Hilary J., Schoene, Bernd and Surge, Donna 2016. Evidence, cause and consequence of exceptionally rapid growth in Pliocene scallops of the US eastern seaboard. 4th International Sclerochronology Conference.
The cause of late Cenozoic mass extinction in the western Atlantic: insights from sclerochronology
Johnson, Andrew L. A., Valentine, Annemarie, Leng, Melanie J., Surge, Donna and Williams, Mark 2014. The cause of late Cenozoic mass extinction in the western Atlantic: insights from sclerochronology. The Palaeontological Association.
Stable isotope (δ18O and δ13C) sclerochronology of Callovian (Middle Jurassic) bivalves (Gryphaea (Bilobissa) dilobotes) and belemnites (Cylindroteuthis puzosiana) from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England): Evidence of palaeoclimate, water depth and belemnite behaviour
Mettam, Colin, Johnson, Andrew L. A., Nunn, Elizabeth V. and Schöne, Bernd R. 2014. Stable isotope (δ18O and δ13C) sclerochronology of Callovian (Middle Jurassic) bivalves (Gryphaea (Bilobissa) dilobotes) and belemnites (Cylindroteuthis puzosiana) from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England): Evidence of palaeoclimate, water depth and belemnite behaviour. Palaeogeography, Palaeoclimatology, Palaeoecology. https://doi.org/10.1016/j.palaeo.2014.01.010