Permeability characterization of braided fabrics made of hemp fibers

Conference item


Rubino, Felice, Corbin, Anne-Clémence, Ferreira, Manuela, Labbanieh, Ahmad Rashed, Sanguigno, Luigi, Soulat, Damien and Maligno, Angelo 2019. Permeability characterization of braided fabrics made of hemp fibers. AIP Publishing. https://doi.org/10.1063/1.5112603
AuthorsRubino, Felice, Corbin, Anne-Clémence, Ferreira, Manuela, Labbanieh, Ahmad Rashed, Sanguigno, Luigi, Soulat, Damien and Maligno, Angelo
Abstract

Reinforcement permeability represents crucial parameters in the manufacturing of fiber reinforced composites by liquid composite molding processes (LCM) [1]. Evaluation of fabric permeability is usually challenging and it requires several flow experiments. Indeed, permeability usually presents different values due to the anisotropic nature of textiles and different values have to be evaluated to calculate the permeability tensor. In addition, different flow conditions could establish during the impregnation: macroscopic and microscopic flow through the inter- and intra-tow leading to unevenly wetted regions of the fabric. Finally, differently from synthetic fibers, natural fibers can absorb fluid, acting as a sink, drawing fluid from the main flow and causing swelling of the natural fibers. In this work unsaturated permeability of braided hemp fabrics are studied for different architectures. Two type of braided fabric were investigated: triaxial and biaxial braids. Three distinct values of braiding angle, namely 45°, 50° and 60° were adopted for the biaxial braid to assess the impact of the braiding angle on the reinforcement permeability. The relation between permeability, porosity and fabric architecture was obtained in the case of the Vacuum Assisted Resin Infusion process.

KeywordsPermeability; hemp fibres
Year2019
JournalPROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2019
PublisherAIP Publishing
Digital Object Identifier (DOI)https://doi.org/10.1063/1.5112603
Web address (URL)http://hdl.handle.net/10545/625449
hdl:10545/625449
File
File Access Level
Open
Publication dates02 Jul 2019
Publication process dates
Deposited04 Dec 2020, 15:56
Accepted2019
ContributorsUniversity of Derby and University of Lille, Ensait, Gemtex, F-59000, Roubaix, France
Permalink -

https://repository.derby.ac.uk/item/9467x/permeability-characterization-of-braided-fabrics-made-of-hemp-fibers

Download files


File
license.txt
File access level: Open

  • 60
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Mechanical Properties of Eco-Friendly, Lightweight Flax and Hybrid Basalt/Flax Foam Core Sandwich Panels
Marzena Pawlik, Urvashi Gunputh, Daniel Odiyi, Sarah Odofin, Huirong Le, Paul Wood, Angelo Maligno and Yiling Lu 2024. Mechanical Properties of Eco-Friendly, Lightweight Flax and Hybrid Basalt/Flax Foam Core Sandwich Panels. Materials. 17 (15), pp. 1-14. https://doi.org/10.3390/ma17153842
An experimental validation of unified mechanics theory for predicting stainless steel low and high cycle fatigue damage initiation.
Canale, G., Lepore, M., Bagherifard, S., Guagliano, M. and Maligno, A. 2023. An experimental validation of unified mechanics theory for predicting stainless steel low and high cycle fatigue damage initiation. Forces in Mechanics . 10, pp. 1-7. https://doi.org/10.1016/j.finmec.2022.100162
Thermo-Mechanical Structural Optimisation of a Chemical Propulsion Satellite Thruster Using Lattice Structures
Valvano, S. and Maligno, A. 2023. Thermo-Mechanical Structural Optimisation of a Chemical Propulsion Satellite Thruster Using Lattice Structures. X International Conference of Computational Methods for Coupled Problems in Science and Engineering COUPLED2023, Chania, Crete, Greece, JUNE 5 - 7, 2023.
Low cycle fatigue predictions of a space thruster built with a new refractory high entropy alloy
Valvano, S., Canale, G., Maligno, A. and Wood, P. 2023. Low cycle fatigue predictions of a space thruster built with a new refractory high entropy alloy. The Fourth International Conference on Damage Mechanics, Baton Rouge, Louisiana, USA, MAY 15 18, 2023.
A computational strategy for damage-tolerant design of hollow shafts under mixed-mode loading condition.
Lepore, Marcello Antonio, Yarullin, Rustam, Maligno, Angelo and Sepe, Raffaele 2018. A computational strategy for damage-tolerant design of hollow shafts under mixed-mode loading condition. Fatigue & Fracture of Engineering Materials & Structures. https://doi.org/10.1111/ffe.12934
Simplified and accurate stiffness of a prismatic anisotropic thin-walled box.
Canale, G., Rubino, Felice, Weaver, Paul M., Citarella, Roberto and Maligno, Angelo 2018. Simplified and accurate stiffness of a prismatic anisotropic thin-walled box. The Open Mechanical Engineering Journal. 12, pp. 1-20. https://doi.org/10.2174/1874155X01812010001
Assessment of structural integrity of subsea wellhead system: analytical and numerical study
Maligno, Angelo, Citarella, Roberto, Silberschmidt, Vadim V. and Soutis, Constantinos 2015. Assessment of structural integrity of subsea wellhead system: analytical and numerical study. Fracture and Structural Integrity. https://doi.org/10.3221/IGF-ESIS.31.08
FEM simulation of a crack propagation in a round bar under combined tension and torsion fatigue loading
Citarella, Roberto, Maligno, Angelo and Shlyannikov, Valery 2015. FEM simulation of a crack propagation in a round bar under combined tension and torsion fatigue loading. Fracture and Structural Integrity. https://doi.org/10.3221/IGF-ESIS.31.11
Retardation effects due to overloads in aluminium-alloy aeronautical components
Maligno, Angelo, Citarella, Roberto and Silberschmidt, Vadim V. 2017. Retardation effects due to overloads in aluminium-alloy aeronautical components. Fatigue & Fracture of Engineering Materials & Structures. https://doi.org/10.1111/ffe.12591
An investigation into metal coated additively manufactured polymer lattice structures
Farhan Khan, Muhammad, Williams, Gavin and Maligno, Angelo 2016. An investigation into metal coated additively manufactured polymer lattice structures. OMICS International. https://doi.org/10.4172/2169-0022.C1.037