An experimental validation of unified mechanics theory for predicting stainless steel low and high cycle fatigue damage initiation.

Journal article


Canale, G., Lepore, M., Bagherifard, S., Guagliano, M. and Maligno, A. 2023. An experimental validation of unified mechanics theory for predicting stainless steel low and high cycle fatigue damage initiation. Forces in Mechanics . 10, pp. 1-7. https://doi.org/10.1016/j.finmec.2022.100162
AuthorsCanale, G., Lepore, M., Bagherifard, S., Guagliano, M. and Maligno, A.
Abstract

An experimental campaign of stainless-steel specimen tests has been completed. Three different types of tests have been performed: UTS (Ultimate Tensile Strength), LCF (Low Cycle Fatigue) and HCF (High Cycle Fatigue). This experimental campaign has been conceived and performed to validate the fatigue damage initiation prediction capabilities of UMT (Unified Mechanics Theory). Two different formulations have been used for LCF and HCF. For the latter, a modification to the existing approach is proposed in this paper. Good agreement has been found between UMT predictions and experimental results.

KeywordsUnified mechanics ; theoryFatigue damage initiation; HCF testing
Year2023
JournalForces in Mechanics
Journal citation10, pp. 1-7
PublisherElsevier
ISSN2666-3597
Digital Object Identifier (DOI)https://doi.org/10.1016/j.finmec.2022.100162
Web address (URL)https://www.sciencedirect.com/science/article/pii/S2666359722000907
FunderEuropean Commission
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online03 Jan 2023
Publication process dates
Deposited23 Aug 2023
Permalink -

https://repository.derby.ac.uk/item/q03qw/an-experimental-validation-of-unified-mechanics-theory-for-predicting-stainless-steel-low-and-high-cycle-fatigue-damage-initiation

Download files


Publisher's version
1-s2.0-S2666359722000907-main.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 28
    total views
  • 12
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Mechanical Properties of Eco-Friendly, Lightweight Flax and Hybrid Basalt/Flax Foam Core Sandwich Panels
Marzena Pawlik, Urvashi Gunputh, Daniel Odiyi, Sarah Odofin, Huirong Le, Paul Wood, Angelo Maligno and Yiling Lu 2024. Mechanical Properties of Eco-Friendly, Lightweight Flax and Hybrid Basalt/Flax Foam Core Sandwich Panels. Materials. 17 (15), pp. 1-14. https://doi.org/10.3390/ma17153842
Oxidation Driven Damage on SiC/BN/SiC Ceramic Matrix Composite Aero-Engine Structures: An Iterative Computational Framework
Canale, G. and Citarella, R. 2024. Oxidation Driven Damage on SiC/BN/SiC Ceramic Matrix Composite Aero-Engine Structures: An Iterative Computational Framework. Materials .
Design aspects of a CMC coating-like system for hot surfaces of aero engine components
Canale, G., Rubino, F. and Citarella, R. 2024. Design aspects of a CMC coating-like system for hot surfaces of aero engine components. Forces in Mechanics . 14, pp. 1-12. https://doi.org/10.1016/j.finmec.2023.100251
Thermo-Mechanical Structural Optimisation of a Chemical Propulsion Satellite Thruster Using Lattice Structures
Valvano, S. and Maligno, A. 2023. Thermo-Mechanical Structural Optimisation of a Chemical Propulsion Satellite Thruster Using Lattice Structures. X International Conference of Computational Methods for Coupled Problems in Science and Engineering COUPLED2023, Chania, Crete, Greece, JUNE 5 - 7, 2023.
Low cycle fatigue predictions of a space thruster built with a new refractory high entropy alloy
Valvano, S., Canale, G., Maligno, A. and Wood, P. 2023. Low cycle fatigue predictions of a space thruster built with a new refractory high entropy alloy. The Fourth International Conference on Damage Mechanics, Baton Rouge, Louisiana, USA, MAY 15 18, 2023.
Permeability characterization of braided fabrics made of hemp fibers
Rubino, Felice, Corbin, Anne-Clémence, Ferreira, Manuela, Labbanieh, Ahmad Rashed, Sanguigno, Luigi, Soulat, Damien and Maligno, Angelo 2019. Permeability characterization of braided fabrics made of hemp fibers. AIP Publishing. https://doi.org/10.1063/1.5112603
A computational strategy for damage-tolerant design of hollow shafts under mixed-mode loading condition.
Lepore, Marcello Antonio, Yarullin, Rustam, Maligno, Angelo and Sepe, Raffaele 2018. A computational strategy for damage-tolerant design of hollow shafts under mixed-mode loading condition. Fatigue & Fracture of Engineering Materials & Structures. https://doi.org/10.1111/ffe.12934
Simplified and accurate stiffness of a prismatic anisotropic thin-walled box.
Canale, G., Rubino, Felice, Weaver, Paul M., Citarella, Roberto and Maligno, Angelo 2018. Simplified and accurate stiffness of a prismatic anisotropic thin-walled box. The Open Mechanical Engineering Journal. 12, pp. 1-20. https://doi.org/10.2174/1874155X01812010001
Assessment of structural integrity of subsea wellhead system: analytical and numerical study
Maligno, Angelo, Citarella, Roberto, Silberschmidt, Vadim V. and Soutis, Constantinos 2015. Assessment of structural integrity of subsea wellhead system: analytical and numerical study. Fracture and Structural Integrity. https://doi.org/10.3221/IGF-ESIS.31.08
FEM simulation of a crack propagation in a round bar under combined tension and torsion fatigue loading
Citarella, Roberto, Maligno, Angelo and Shlyannikov, Valery 2015. FEM simulation of a crack propagation in a round bar under combined tension and torsion fatigue loading. Fracture and Structural Integrity. https://doi.org/10.3221/IGF-ESIS.31.11
Retardation effects due to overloads in aluminium-alloy aeronautical components
Maligno, Angelo, Citarella, Roberto and Silberschmidt, Vadim V. 2017. Retardation effects due to overloads in aluminium-alloy aeronautical components. Fatigue & Fracture of Engineering Materials & Structures. https://doi.org/10.1111/ffe.12591
An investigation into metal coated additively manufactured polymer lattice structures
Farhan Khan, Muhammad, Williams, Gavin and Maligno, Angelo 2016. An investigation into metal coated additively manufactured polymer lattice structures. OMICS International. https://doi.org/10.4172/2169-0022.C1.037