Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method

Journal article


Xie, Jianfei, He, S., Zu, Y. Q., Lamy-Chappuis, B. and Yardley, B. W. D. 2017. Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method. 53 (8), pp. 2637-2649. https://doi.org/10.1007/s00231-017-2007-6
AuthorsXie, Jianfei, He, S., Zu, Y. Q., Lamy-Chappuis, B. and Yardley, B. W. D.
KeywordsPorous Media
Year2017
Journal citation53 (8), pp. 2637-2649
PublisherSpringer Nature
ISSN0947-7411
1432-1181
Digital Object Identifier (DOI)https://doi.org/10.1007/s00231-017-2007-6
Web address (URL)http://hdl.handle.net/10545/624792
hdl:10545/624792
Publication dates10 Mar 2017
Publication process dates
Deposited07 May 2020, 12:33
AcceptedJan 2017
ContributorsUniversity of Sheffield
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/948zw/relative-permeabilities-of-supercritical-co2-and-brine-in-carbon-sequestration-by-a-two-phase-lattice-boltzmann-method

Download files

  • 11
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Molecular dynamics study on the kinematic viscosity, density and structure of fuel blends containing n-decane and biofuel compound of ethyl decanoate or ethyl dodecanoate
Xueming Yang, Qiang Liu, Yongfu Ma, Jianfei Xie and Bingyang Cao 2023. Molecular dynamics study on the kinematic viscosity, density and structure of fuel blends containing n-decane and biofuel compound of ethyl decanoate or ethyl dodecanoate. Journal of Molecular Liquids. 379, pp. 1-13. https://doi.org/10.1016/j.molliq.2023.121680
AI-Guided Computing Insights into a Thermostat Monitoring Neonatal Intensive Care Unit (NICU)
Zhang, N., Wood, O., Yang, Z. and Xie, J. 2023. AI-Guided Computing Insights into a Thermostat Monitoring Neonatal Intensive Care Unit (NICU). Sensors. 23 (9), pp. 1-16. https://doi.org/10.3390/s23094492
A mean free path approach to the micro/nanochannel gas flows
Xie, Jianfei 2020. A mean free path approach to the micro/nanochannel gas flows. Advances in Aerodynamics. https://doi.org/10.1186/s42774-020-00035-w
Effect of various surface conditions on nanochannel flows past permeable walls
Xie, Jianfei and Cao, Bing-Yang 2016. Effect of various surface conditions on nanochannel flows past permeable walls. 43 (1), pp. 65-75. https://doi.org/10.1080/08927022.2016.1233547
Influence of travelling surface waves on nanofluidic viscosity
Xie, Jianfei and Cao, Bing-Yang 2018. Influence of travelling surface waves on nanofluidic viscosity. 160, pp. 42-50. https://doi.org/10.1016/j.compfluid.2017.10.022
Natural convection of power-law fluids under wall vibrations: A lattice Boltzmann study
Xie, Jianfei 2017. Natural convection of power-law fluids under wall vibrations: A lattice Boltzmann study. 72 (8), pp. 600-627. https://doi.org/10.1080/10407782.2017.1394134
A test of the effectiveness of pore scale fluid flow simulations and constitutive equations for modelling the effects of mineral dissolution on rock permeability
Lamy-Chappuis, Benoit, Yardley, Bruce W.D., He, Shuisheng, Zu, Yingqing and Xie, Jianfei 2018. A test of the effectiveness of pore scale fluid flow simulations and constitutive equations for modelling the effects of mineral dissolution on rock permeability. 483, pp. 501-510. https://doi.org/10.1016/j.chemgeo.2018.03.020
Lattce Boltzmann mdoelling of natural convection of power-law fluids under wall vibrations
Xie, Jianfei and Cao, Bing-Yang 2018. Lattce Boltzmann mdoelling of natural convection of power-law fluids under wall vibrations. https://doi.org/10.1615/ihtc16.cov.020599
Nanochannel flow past permeable walls via molecular dynamics
Xie, Jianfei and Cao, Bing-Yang 2016. Nanochannel flow past permeable walls via molecular dynamics. 6 (7), p. 075307. https://doi.org/10.1063/1.4959022
Two approaches to modelling the heating of evaporating droplet
Xie, Jianfei 2014. Two approaches to modelling the heating of evaporating droplet. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.004
Molecular Dynamics Study on Fluid Flow in Nanochannels With Permeable Walls
Xie, Jianfei and Cao, Bing-Yang 2016. Molecular Dynamics Study on Fluid Flow in Nanochannels With Permeable Walls. https://doi.org/10.1115/mnhmt2016-6421
Effective mean free path and viscosity of confined gases
Xie, Jianfei 2019. Effective mean free path and viscosity of confined gases. Physics of Fluids. 31 (7), p. 072002. https://doi.org/10.1063/1.5108627
Variation of molecular mean free path in confined geometries
Xie, Jianfei 2019. Variation of molecular mean free path in confined geometries. AIP Publishing. https://doi.org/10.1063/1.5119594.