A mean free path approach to the micro/nanochannel gas flows

Journal article


Xie, Jianfei 2020. A mean free path approach to the micro/nanochannel gas flows. Advances in Aerodynamics. https://doi.org/10.1186/s42774-020-00035-w
AuthorsXie, Jianfei
Abstract

We investigate the gas flows near to solid surfaces in terms of the local spatial variation in the molecular mean free path (MFP). Molecular dynamics (MD) is the appropriate scientific tool for obtaining molecularly-accurate dynamic information in micro and nano-scale gas flows, and has been used to evaluate the molecular mean free path of gases. In the calibration procedure, the viscosity of a gas in the homogeneous case can be recovered in our MD simulations and reach good agreement with the theoretical prediction and data from NIST. In surface-bounded gas flows, if the collisions between gas molecules and walls are counted, a spatially-varying mean free path is presented,
and for the first time we have observed that the distribution of the free paths deviates from the exponential one and spikes appear in their distributions at larger Kn, i.e. in the transition flow regime. Based on elementary kinetic theory, the effective viscosity of the gas derived from the mean free path has been incorporated into the framework of the continuum-fluid dynamics equations, and micro-Couette flows are performed to demonstrate this potential application.

KeywordsRarefied gas dynamics, mean free path, molecular dynamics
Year2020
JournalAdvances in Aerodynamics
PublisherSpringer Nature
ISSN2524-6992
Digital Object Identifier (DOI)https://doi.org/10.1186/s42774-020-00035-w
Web address (URL)http://hdl.handle.net/10545/624793
hdl:10545/624793
Publication dates07 May 2020
Publication process dates
Deposited07 May 2020, 13:01
Accepted15 Apr 2020
ContributorsUniversity of Derby
File
File Access Level
Open
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/93zz1/a-mean-free-path-approach-to-the-micro-nanochannel-gas-flows

Download files

  • 19
    total views
  • 6
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Utilizing Artificial intelligence to identify an Optimal Machine learning model for predicting fuel consumption in Diesel engines
Amirali Shateri, Zhiyin Yang and Jianfei Xie 2024. Utilizing Artificial intelligence to identify an Optimal Machine learning model for predicting fuel consumption in Diesel engines. Energy and AI. 16, pp. 1-17. https://doi.org/10.1016/j.egyai.2024.100360
Performance comparison of CSP system with different heat transfer and storage fluids at multi-time scales by means of system advisor model
Xueming Yang, Hu Zhao, Ming Zhang, Chang Ji and Jianfei Xie 2024. Performance comparison of CSP system with different heat transfer and storage fluids at multi-time scales by means of system advisor model. Solar Energy Materials and Solar Cells. 269, pp. 1-12. https://doi.org/10.1016/j.solmat.2024.112765
Multi-factor analysis and optimization design of a cascaded packed-bed thermal storage system coupled with adiabatic compressed air energy storage
Xueming Yang, Jie Cui, Yi Li, He Chi and Jianfei Xie 2023. Multi-factor analysis and optimization design of a cascaded packed-bed thermal storage system coupled with adiabatic compressed air energy storage. Energy Conversion and Management. 300, pp. 1-13. https://doi.org/10.1016/j.enconman.2023.117961
Approaches for describing processes of fuel droplet heating and evaporation in combustion engines
Jianfei Xie 2023. Approaches for describing processes of fuel droplet heating and evaporation in combustion engines. Fuel. 360, pp. 1-14. https://doi.org/10.1016/j.fuel.2023.130465
High thermal conductivity of porous graphite/paraffin composite phase change material with 3D porous graphite foam
Xueming Yang, Chunbo Li, YongFu Ma, He Chi, Zongjie Hu and Jianfei Xie 2023. High thermal conductivity of porous graphite/paraffin composite phase change material with 3D porous graphite foam. Chemical Engineering Journal. 473, pp. 1-9. https://doi.org/10.1016/j.cej.2023.145364
Molecular dynamics study on the kinematic viscosity, density and structure of fuel blends containing n-decane and biofuel compound of ethyl decanoate or ethyl dodecanoate
Xueming Yang, Qiang Liu, Yongfu Ma, Jianfei Xie and Bingyang Cao 2023. Molecular dynamics study on the kinematic viscosity, density and structure of fuel blends containing n-decane and biofuel compound of ethyl decanoate or ethyl dodecanoate. Journal of Molecular Liquids. 379, pp. 1-13. https://doi.org/10.1016/j.molliq.2023.121680
AI-Guided Computing Insights into a Thermostat Monitoring Neonatal Intensive Care Unit (NICU)
Zhang, N., Wood, O., Yang, Z. and Xie, J. 2023. AI-Guided Computing Insights into a Thermostat Monitoring Neonatal Intensive Care Unit (NICU). Sensors. 23 (9), pp. 1-16. https://doi.org/10.3390/s23094492
Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method
Xie, Jianfei, He, S., Zu, Y. Q., Lamy-Chappuis, B. and Yardley, B. W. D. 2017. Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method. 53 (8), pp. 2637-2649. https://doi.org/10.1007/s00231-017-2007-6
Effect of various surface conditions on nanochannel flows past permeable walls
Xie, Jianfei and Cao, Bing-Yang 2016. Effect of various surface conditions on nanochannel flows past permeable walls. 43 (1), pp. 65-75. https://doi.org/10.1080/08927022.2016.1233547
Influence of travelling surface waves on nanofluidic viscosity
Xie, Jianfei and Cao, Bing-Yang 2018. Influence of travelling surface waves on nanofluidic viscosity. 160, pp. 42-50. https://doi.org/10.1016/j.compfluid.2017.10.022
Natural convection of power-law fluids under wall vibrations: A lattice Boltzmann study
Xie, Jianfei 2017. Natural convection of power-law fluids under wall vibrations: A lattice Boltzmann study. 72 (8), pp. 600-627. https://doi.org/10.1080/10407782.2017.1394134
A test of the effectiveness of pore scale fluid flow simulations and constitutive equations for modelling the effects of mineral dissolution on rock permeability
Lamy-Chappuis, Benoit, Yardley, Bruce W.D., He, Shuisheng, Zu, Yingqing and Xie, Jianfei 2018. A test of the effectiveness of pore scale fluid flow simulations and constitutive equations for modelling the effects of mineral dissolution on rock permeability. 483, pp. 501-510. https://doi.org/10.1016/j.chemgeo.2018.03.020
Lattce Boltzmann mdoelling of natural convection of power-law fluids under wall vibrations
Xie, Jianfei and Cao, Bing-Yang 2018. Lattce Boltzmann mdoelling of natural convection of power-law fluids under wall vibrations. https://doi.org/10.1615/ihtc16.cov.020599
Nanochannel flow past permeable walls via molecular dynamics
Xie, Jianfei and Cao, Bing-Yang 2016. Nanochannel flow past permeable walls via molecular dynamics. 6 (7), p. 075307. https://doi.org/10.1063/1.4959022
Two approaches to modelling the heating of evaporating droplet
Xie, Jianfei 2014. Two approaches to modelling the heating of evaporating droplet. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.004
Molecular Dynamics Study on Fluid Flow in Nanochannels With Permeable Walls
Xie, Jianfei and Cao, Bing-Yang 2016. Molecular Dynamics Study on Fluid Flow in Nanochannels With Permeable Walls. https://doi.org/10.1115/mnhmt2016-6421
Effective mean free path and viscosity of confined gases
Xie, Jianfei 2019. Effective mean free path and viscosity of confined gases. Physics of Fluids. 31 (7), p. 072002. https://doi.org/10.1063/1.5108627
Variation of molecular mean free path in confined geometries
Xie, Jianfei 2019. Variation of molecular mean free path in confined geometries. AIP Publishing. https://doi.org/10.1063/1.5119594.