Reliable, distributed scheduling and rescheduling for time-critical, multiagent systems
Journal article
Authors | Whitbrook, Amanda, Meng, Qinggang and Chung, Paul W. H. |
---|---|
Abstract | This paper addresses two main problems with many heuristic task allocation approaches – solution trapping in local minima and static structure. The existing distributed task allocation algorithm known as PI (Performance Impact) is used as the vehicle for developing solutions to these problems as it has been shown to out-perform the state-of-the-art Consensus Based Bundle Algorithm (CBBA) for time-critical problems with tight deadlines, but is both static and sub-optimal with a tendency towards trapping in local minima. The paper describes two additional modules that are easily integrated with PI. The first extends the algorithm to permit dynamic online rescheduling in real time, and the second boosts performance by introducing an additional soft max action selection procedure that increases the algorithm’s exploratory properties. The paper demonstrates the effectiveness of the dynamic rescheduling module and shows that the average time taken to perform tasks can be reduced by up to 9% when the soft max module is used. In addition, the solution of some problems that baseline PI cannot handle is enabled by the second module. These developments represent a significant advance in the state-of-the-art for multi-agent, time-critical task assignment. |
This paper addresses two main problems with many heuristic task allocation approaches – solution trapping in local minima and static structure. The existing distributed task allocation algorithm known as PI (Performance Impact) is used as the vehicle for developing solutions to these problems as it has been shown to out-perform the state-of-the-art Consensus Based Bundle Algorithm (CBBA) for time-critical problems with tight deadlines, but is both static and sub-optimal with a tendency towards trapping in local minima. The paper describes two additional modules that are easily integrated with PI. The first extends the algorithm to permit dynamic online rescheduling in real time, and the second boosts performance by introducing an additional soft max action selection procedure that increases the algorithm’s exploratory properties. The paper demonstrates the effectiveness of the dynamic rescheduling module and shows that the average time taken to perform tasks can be reduced by up to 9% when the soft max module is used. In addition, the solution of some problems that baseline PI cannot handle is enabled by the second module. These developments represent a significant advance in the state-of-the-art for multi-agent, time-critical task assignment. | |
Keywords | Adaptive systems; Auction-based scheduling; Distributed task allocation; Multi-agent systems |
Year | 2017 |
Journal | IEEE Transactions on Automation Science and Engineering |
Publisher | IEEE |
ISSN | 1545-5955 |
15583783 | |
Digital Object Identifier (DOI) | https://doi.org/10.1109/TASE.2017.2679278 |
Web address (URL) | http://hdl.handle.net/10545/621610 |
hdl:10545/621610 | |
Publication dates | 26 Apr 2017 |
Publication process dates | |
Deposited | 10 May 2017, 18:17 |
Rights | Archived with thanks to IEEE Transactions on Automation Science and Engineering |
Contributors | University of Derby and Loughborough University |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/95255/reliable-distributed-scheduling-and-rescheduling-for-time-critical-multiagent-systems
Download files
47
total views24
total downloads3
views this month2
downloads this month
Export as
Related outputs

Addressing robustness in time-critical, distributed, task allocation algorithms.
Whitbrook, Amanda, Meng, Qinggang and Chung, Paul W. H. 2018. Addressing robustness in time-critical, distributed, task allocation algorithms. Applied Intelligence. https://doi.org/10.1007/s10489-018-1169-3
A novel distributed scheduling algorithm for time-critical multi-agent systems.
Whitbrook, Amanda, Meng, Qinggang and Chung, Paul W. H. 2015. A novel distributed scheduling algorithm for time-critical multi-agent systems. IEEE. https://doi.org/10.1109/IROS.2015.7354299
Juxtaposition of system dynamics and agent-based simulation for a case study in immunosenescence.
Figueredo, Grazziela P., Siebers, Peer-Olaf, Aickelin, Uwe, Whitbrook, Amanda and Garibaldi, Jonathan M. 2015. Juxtaposition of system dynamics and agent-based simulation for a case study in immunosenescence. PLos ONE. https://doi.org/10.1371/journal.pone.0118359
Data classification using the Dempster–Shafer method.
Chen, Qi, Whitbrook, Amanda, Aickelin, Uwe and Roadknight, Chris 2014. Data classification using the Dempster–Shafer method. Journal of Experimental & Theoretical Artificial Intelligence. https://doi.org/10.1080/0952813X.2014.886301
A conceptual framework for combining artificial neural networks with computational aeroacoustics for design development.
McKee, Claire, Harmanto, Dani and Whitbrook, Amanda 2018. A conceptual framework for combining artificial neural networks with computational aeroacoustics for design development. Industrial Engineering and Operations Management Society (IEOM).A cloud-based path-finding framework: Improving the performance of real-time navigation in games
Rowe, Jordan, Whitbrook, Amanda and Chen, Minsi 2017. A cloud-based path-finding framework: Improving the performance of real-time navigation in games. Association of Computing Machinery. https://doi.org/10.1145/3147234.3148097