A robust, distributed task allocation algorithm for time-critical, multi agent systems operating in uncertain environments

Conference item


Whitbrook, Amanda, Meng, Qinggang and Chung, Paul W. H. 2017. A robust, distributed task allocation algorithm for time-critical, multi agent systems operating in uncertain environments.
AuthorsWhitbrook, Amanda, Meng, Qinggang and Chung, Paul W. H.
Abstract

The aim of this work is to produce and test a robust, distributed, multi-agent task allocation algorithm, as these are scarce and not well-documented in the literature. The vehicle used to create the robust system is the Performance Impact algorithm (PI), as it has previously shown good performance. Three different variants of PI are designed to improve its robustness, each using Monte Carlo sampling to approximate Gaussian distributions. Variant A uses the expected value of the task completion times, variant B uses the worst-case scenario metric and variant C is a hybrid that implements a combination of these. The paper shows that, in simulated trials, baseline PI does not han-dle uncertainty well; the task-allocation success rate tends to decrease linear-ly as degree of uncertainty increases. Variant B demonstrates a worse per-formance and variant A improves the failure rate only slightly. However, in comparison, the hybrid variant C exhibits a very low failure rate, even under high uncertainty. Furthermore, it demonstrates a significantly better mean ob-jective function value than the baseline.

KeywordsMulti-agent systems; Distributed task allocation; Auction-based scheduling; Robustness to uncertainty
Year2017
Web address (URL)http://hdl.handle.net/10545/621611
hdl:10545/621611
File
File Access Level
Open
File
File Access Level
Open
Publication dates27 Jun 2017
Publication process dates
Deposited11 May 2017, 08:32
ContributorsUniversity of Derby and Loughborough University
Permalink -

https://repository.derby.ac.uk/item/9541z/a-robust-distributed-task-allocation-algorithm-for-time-critical-multi-agent-systems-operating-in-uncertain-environments

Download files


File
license.txt
File access level: Open

  • 33
    total views
  • 32
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Addressing robustness in time-critical, distributed, task allocation algorithms.
Whitbrook, Amanda, Meng, Qinggang and Chung, Paul W. H. 2018. Addressing robustness in time-critical, distributed, task allocation algorithms. Applied Intelligence. https://doi.org/10.1007/s10489-018-1169-3
A novel distributed scheduling algorithm for time-critical multi-agent systems.
Whitbrook, Amanda, Meng, Qinggang and Chung, Paul W. H. 2015. A novel distributed scheduling algorithm for time-critical multi-agent systems. IEEE. https://doi.org/10.1109/IROS.2015.7354299
Juxtaposition of system dynamics and agent-based simulation for a case study in immunosenescence.
Figueredo, Grazziela P., Siebers, Peer-Olaf, Aickelin, Uwe, Whitbrook, Amanda and Garibaldi, Jonathan M. 2015. Juxtaposition of system dynamics and agent-based simulation for a case study in immunosenescence. PLos ONE. https://doi.org/10.1371/journal.pone.0118359
Data classification using the Dempster–Shafer method.
Chen, Qi, Whitbrook, Amanda, Aickelin, Uwe and Roadknight, Chris 2014. Data classification using the Dempster–Shafer method. Journal of Experimental & Theoretical Artificial Intelligence. https://doi.org/10.1080/0952813X.2014.886301
A conceptual framework for combining artificial neural networks with computational aeroacoustics for design development.
McKee, Claire, Harmanto, Dani and Whitbrook, Amanda 2018. A conceptual framework for combining artificial neural networks with computational aeroacoustics for design development. Industrial Engineering and Operations Management Society (IEOM).
A cloud-based path-finding framework: Improving the performance of real-time navigation in games
Rowe, Jordan, Whitbrook, Amanda and Chen, Minsi 2017. A cloud-based path-finding framework: Improving the performance of real-time navigation in games. Association of Computing Machinery. https://doi.org/10.1145/3147234.3148097
Model building
Lowdnes, Val, Berry, Stuart, Trovati, Marcello and Whitbrook, Amanda 2017. Model building. in: Springer.
Distributed task rescheduling with time constraints for the optimization of total task allocations in a multirobot system
Turner, Joanna, Meng, Qinggang, Schaefer, Gerald, Whitbrook, Amanda and Soltoggio, Andrea 2017. Distributed task rescheduling with time constraints for the optimization of total task allocations in a multirobot system. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2017.2743164
Reliable, distributed scheduling and rescheduling for time-critical, multiagent systems
Whitbrook, Amanda, Meng, Qinggang and Chung, Paul W. H. 2017. Reliable, distributed scheduling and rescheduling for time-critical, multiagent systems. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2017.2679278