Learning Disease Causality Knowledge from Web of Health Data

Journal article


Yu, H. and Reiff-Marganiec, S. 2022. Learning Disease Causality Knowledge from Web of Health Data. International journal on semantic web and information systems. 18 (1), pp. 1-19. https://doi.org/10.4018/IJSWIS.297145
AuthorsYu, H. and Reiff-Marganiec, S.
Abstract

Health information becomes importantly valuable to protect public health in the current coronavirus situation. Especially, knowledge-based information systems can play a crucial role in helping individuals to practice risk assessment and remote diagnosis. We introduce a novel approach that will enable developing causality focused knowledge learning in a robust and transparent manner. Then, the machine gains the causality and probability knowledge for doing inference (thinking) and accurate prediction later. Besides, the hidden knowledge can be discovered beyond the existing understanding of the diseases. The whole approach built on a Causal Probability Description Logic Framework that combines Natural Language Processing (NLP), Causality Analysis and extended Knowledge Graph (KG) technologies. The experimental work has processed 801 diseases in total from the UK NHS website linking with DBpedia datasets. As the result, the machine learnt comprehensive health causal knowledge and relations among the diseases, symptoms, and other facts efficiently.

KeywordsCausality analysis; Semantic Web; Knowledge Graph; Natural Language Processing; Healthcare ; Artificial Intelligent; Disease Diagnosis
Year2022
JournalInternational journal on semantic web and information systems
Journal citation18 (1), pp. 1-19
PublisherIGI Global
ISSN1552-6291
Digital Object Identifier (DOI)https://doi.org/10.4018/IJSWIS.297145
Web address (URL)https://www.igi-global.com/journals/open-access/table-of-contents/international-journal-semantic-web-information/1092
Output statusPublished
Publication dates
OnlineJan 2022
Publication process dates
Accepted2021
Deposited21 Apr 2022
Supplemental file
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/95q14/learning-disease-causality-knowledge-from-web-of-health-data

  • 52
    total views
  • 1
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Explainable DCNN Decision Framework for Breast Lesion Classification from Ultrasound Images Based on Cancer Characteristics
AlZoubi, A., Eskandari, A., Yu, H. and Du, H. 2024. Explainable DCNN Decision Framework for Breast Lesion Classification from Ultrasound Images Based on Cancer Characteristics . Bioengineering. 11 (5), pp. 1-23. https://doi.org/10.3390/bioengineering11050453
Deep Recognition of Chinese Herbal Medicines Based on a Caputo Fractional Order Convolutional Neural Network
Tao Li, Jiawei Yang, Chenxi Li, Lulu Lv, Kang Liu, Zhipeng Yuan, Youyong Li, Hongqing Yu and Yu, H. 2024. Deep Recognition of Chinese Herbal Medicines Based on a Caputo Fractional Order Convolutional Neural Network. International Workshop on Internet of Things of Big Data for Healthcare. Springer. https://doi.org/10.1007/978-3-031-52216-1_4
Evaluation of Integrated XAI Frameworks for Explaining Disease Prediction Models in Healthcare
Yu, H., Adebola Alaba and Ebere Eziefuna 2024. Evaluation of Integrated XAI Frameworks for Explaining Disease Prediction Models in Healthcare. International Workshop on Internet of Things of Big Data for Healthcare. Springer. https://doi.org/10.1007/978-3-031-52216-1_2
Attention Enhanced Siamese Neural Network for Face Validation
Yu, H. 2023. Attention Enhanced Siamese Neural Network for Face Validation. Artificial Intelligence and Applications. 2 (1), pp. 21-27. https://doi.org/10.47852/bonviewAIA32021018
IoTBDH-2023: The 5th International Workshop on Internet of Things of Big Data for Healthcare
Qi, J., Yu, H., Yang, P., Yang, Y. and Pang, Z. 2023. IoTBDH-2023: The 5th International Workshop on Internet of Things of Big Data for Healthcare. 32nd ACM International Conference on Information and Knowledge Management (CIKM’23), Birmingham, UK. ACM. https://doi.org/10.1145/3583780.3615299
AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research
Yu, H., O'Neill, S. and Kermanizadeh, A. 2023. AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research. Bioengineering. 10 (10), pp. 1-18. https://doi.org/10.3390/bioengineering10101134
A unified graph model based on molecular data binning for disease subtyping
Hassan Zada, M., Yuan, B, Khan, W., Anjum, A., Reiff-Marganiec, S. and Saleem, R. 2022. A unified graph model based on molecular data binning for disease subtyping. Journal of Biomedical Informatics. pp. 1-24. https://doi.org/10.1016/j.jbi.2022.104187
Recommender Systems Evaluator: A Framework for Evaluating the Performance of Recommender Systems
dos Santos, Paulo V.G., Tardiole Kuehne, Bruno, Batista, Bruno G., Leite, Dionisio M., Peixoto, Maycon L.M., Moreira, Edmilson Marmo and Reiff-Marganiec, Stephan 2021. Recommender Systems Evaluator: A Framework for Evaluating the Performance of Recommender Systems. in: Springer.
Large-scale Data Integration Using Graph Probabilistic Dependencies (GPDs)
Zada, Muhammad Sadiq Hassan, Yuan, Bo, Anjum, Ashiq, Azad, Muhammad Ajmal, Khan, Wajahat Ali and Reiff-Marganiec, Stephan 2020. Large-scale Data Integration Using Graph Probabilistic Dependencies (GPDs). IEEE. https://doi.org/10.1109/bdcat50828.2020.00028
Targeted ensemble machine classification approach for supporting IOT enabled skin disease detection
Yu, Hong Qing and Reiff-Marganiec, Stephan 2021. Targeted ensemble machine classification approach for supporting IOT enabled skin disease detection. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3069024
Performance evaluation of machine learning techniques for fault diagnosis in vehicle fleet tracking modules
Sepulevene, Luis, Drummond, Isabela, Kuehne, Bruno Tardiole, Frinhani, Rafael, Filho, Dionisio Leite, Peixoto, Maycon, Reiff-Marganiec, Stephan and Batista, Bruno 2021. Performance evaluation of machine learning techniques for fault diagnosis in vehicle fleet tracking modules. The Computer Journal. https://doi.org/10.1093/comjnl/bxab047
A repairing missing activities approach with succession relation for event logs
Liu, Jie, Xu, Jiuyun, Zhang, Ruru and Reiff-Marganiec, Stephan 2020. A repairing missing activities approach with succession relation for event logs. Knowledge and Information Systems. https://doi.org/10.1007/s10115-020-01524-6
A multi-objective optimized service level agreement approach applied on a cloud computing ecosystem
Azevedo, Leonildo Jose de Melo de, Estrella, Julio C., Toledo, Claudia F. Motta and Reiff-Marganiec, Stephan 2020. A multi-objective optimized service level agreement approach applied on a cloud computing ecosystem. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3006171
Optimizing computational resource management for the scientific gateways ecosystems based on the service‐oriented paradigm
Martins de Oliveira, Edvard, Estrella, Júlio Cézar, Botazzo Delbem, Alexandre Claudio, Souza Pardo, Mário Henrique, Guzzo da Costa, Fausto, Defelicibus, Alexandre and Reiff‐Marganiec, Stephan 2020. Optimizing computational resource management for the scientific gateways ecosystems based on the service‐oriented paradigm. Software Practice and Experience. 50 (6), pp. 899-924. https://doi.org/10.1002/spe.2808
Experimental Disease Prediction Research on Combining Natural Language Processing and Machine Learning
Yu, H. 2020. Experimental Disease Prediction Research on Combining Natural Language Processing and Machine Learning. IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT). IEEE Xplore. https://doi.org/10.1109/iccsnt47585.2019.8962507
Dynamic Causality Knowledge Graph Generation for Supporting the Chatbot Healthcare System
Yu, H. 2020. Dynamic Causality Knowledge Graph Generation for Supporting the Chatbot Healthcare System. in: Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3 New York Springer.
Low-Cost and Data Anonymised City Traffic Flow Data Collection to Support Intelligent Traffic System
Handscombe, J. and Yu, H. 2019. Low-Cost and Data Anonymised City Traffic Flow Data Collection to Support Intelligent Traffic System. Sensors. 19 (2), p. 347. https://doi.org/10.3390/s19020347
Semantic Lifting and Reasoning on the Personalised Activity Big Data Repository for Healthcare Research
Yu, H. and Dong, F. 2019. Semantic Lifting and Reasoning on the Personalised Activity Big Data Repository for Healthcare Research. International Journal of Web Engineering and Technology. 14 (2), pp. 103 - 121.
Mining Symptom and Disease Web Data with NLP and Open Linked Data
Yu, H. 2019. Mining Symptom and Disease Web Data with NLP and Open Linked Data. 5th World Congress on Electrical Engineering and Computer Systems and Sciences (EECSS’19) Lisbon, Portugal – August, 2019. https://doi.org/10.11159/mvml19.108
A linear logic approach to the composition of RESTful web services
Zhao, X., Liu, E., Yu, H. and Clapworthy, G.J. 2015. A linear logic approach to the composition of RESTful web services. International Journal of Web Engineering and Technology. 10 (3), pp. 245-271. https://doi.org/10.1504/ijwet.2015.072348
Socio-semantic Integration of Educational Resources - the Case of the mEducator Project
Dietze, Stefan, Kaldoudi, Eleni, Dovrolis, Nikolas, Giordano, Daniela, Spampinato, Concetto, Hendrix, Maurice, Protopsaltis, Aristidis, Taibi, v and Yu, H. 2013. Socio-semantic Integration of Educational Resources - the Case of the mEducator Project. Journal of Universal Computer Science. 19 (11), pp. 1-27. https://doi.org/10.3217/jucs-019-11-1543
Interlinking educational resources and the web of data
Dietze, S., Sanchez‐Alonso, S., Ebner, H., Yu, H., Giordano, D., Marenzi, I. and Pereira Nunes, B. 2013. Interlinking educational resources and the web of data. Program. 47 (1). https://doi.org/10.1108/00330331211296312
Using Linked Data to Annotate and Search Educational Video Resources for Supporting Distance Learning
Yu, H., Pedrinaci, C., Dietze, S. and Domingue, J. 2012. Using Linked Data to Annotate and Search Educational Video Resources for Supporting Distance Learning. IEEE Transactions on Learning Technologies. 5 (2), pp. 130-142. https://doi.org/10.1109/tlt.2012.1
An automated approach to Semantic Web Services Mediation
Dietze, S., Gugliotta, A., Domingue, J., Yu, H. and Mrissa, M. 2010. An automated approach to Semantic Web Services Mediation. Service Oriented Computing and Applications. 4, p. 261–275. https://doi.org/10.1007/s11761-010-0070-7