Multi-step ahead battery SOC estimation using data-driven prognostics and health management

Conference paper


Pimentel, J., McEwan, A. and Yu, H. 2025. Multi-step ahead battery SOC estimation using data-driven prognostics and health management. ICSIE '24: 13th International Conference on Software and Information Engineering. Derby, United Kingdom 02 - 04 Dec 2024 ACM. https://doi.org/10.1145/3708635.3708642
AuthorsPimentel, J., McEwan, A. and Yu, H.
TypeConference paper
Abstract

This paper proposes a data-driven multi-step ahead battery state of charge (SOC) forecasting system that can be used for prognostics and health management (PHM) of a battery management system (BMS). Two long short-term memory (LSTM) recurrent neural networks (RNN) are implemented and tested, due to their unique capability to, at the same time, use a high number of past time steps and forecast a horizon of interest at real-time. This online inference is then capable to provide an advisory window in case the BMS needs to take any preventive action. The LSTM models, a stacked-LSTM
and a Bidi-LSTM, are compared to a statistical-based algorithm which uses a combination of autoregressive integrated moving average (ARIMA) with a polynomial regressor that fits measured variables into the battery SOC. The three methods are tested and validated against a wealthy battery dataset and results demonstrate the feasibility of using the Bidi-LSTM RNN as multi-step ahead SOC forecast estimator.

KeywordsPHM; SOC Estimation; Time Series Forecasting; Multi-Step Ahead; Bidirectional LSTM; Data-Driven
Year2025
ConferenceICSIE '24: 13th International Conference on Software and Information Engineering
JournalICSIE '24: Proceedings of the 2024 13th International Conference on Software and Information Engineering
PublisherACM
Digital Object Identifier (DOI)https://doi.org/10.1145/3708635.3708642
Web address (URL)https://dl.acm.org/doi/10.1145/3708635.3708642
Accepted author manuscript
License
File Access Level
Open
Publisher's version
License
File Access Level
Restricted
Journal citationpp. 104-109
ISBN9798400717765
Web address (URL) of conference proceedingshttps://dl.acm.org/doi/proceedings/10.1145/3708635
Output statusPublished
Publication dates
Online26 Apr 2025
Publication process dates
AcceptedSep 2024
Deposited19 May 2025
Permalink -

https://repository.derby.ac.uk/item/q8z5z/multi-step-ahead-battery-soc-estimation-using-data-driven-prognostics-and-health-management

Download files


Accepted author manuscript
2024_ICSIE_Submitted_Revised_15Sep2024.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 132
    total views
  • 41
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

A novel real-time battery state estimation using data-driven prognostics and health management
Pimentel, J., McEwan, A. and Yu, H. 2025. A novel real-time battery state estimation using data-driven prognostics and health management. Applied Sciences. 15 (5), pp. 1-21. https://doi.org/10.3390/app15158538
Engineering critical analysis software services: A graph-RAG and self-learning large language model agent services approach
Yu, H., Scanlon, B. and Reiff-Marganiec, S. 2025. Engineering critical analysis software services: A graph-RAG and self-learning large language model agent services approach. International Conference on Service Oriented Software Engineering (IEEE SOSE 2025). Tucson, Arizona, USA 21 - 24 Jul 2025 IEEE.
Case studies on LLM centric and services oriented data analytics agent development
Yu, H., Sutton, J., O'Neill, S. and Reiff-Marganiec, S. 2025. Case studies on LLM centric and services oriented data analytics agent development. ICSIE '24: Proceedings of the 2024 13th International Conference on Software and Information Engineering. Derby United Kingdom 02 - 04 Dec 2024 Association for Computing Machinery. https://doi.org/10.1145/3708635.3708655
Data-Driven and Model-Based Prognostics and Health Management for Embedded Systems
Pimentel, J. 2025. Data-Driven and Model-Based Prognostics and Health Management for Embedded Systems. PhD Thesis University of Derby College of Science and Engineering https://doi.org/10.48773/qy7v7
Mass-parallel Sleptsov net-based solving PDEs on FPGA for embedded control
Zaitsev, D., McEwan, A. and Kostikov, A. 2025. Mass-parallel Sleptsov net-based solving PDEs on FPGA for embedded control. 10th International Conference on Information and Communication Technology for Intelligent Systems (ICTIS - 2025).
A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization
Samuel, O., Asogbon, M. and McEwan, A. 2024. A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization. Biomedical Signal Processing and Control. 95, pp. 1-11. https://doi.org/10.1016/j.bspc.2024.106446
An Efficient Deep Transfer Learning Network for Characterization of Stroke Patients’ Motor Execution from Multi-Channel EEG-Recordings
Samuel, O., Asogbon, M., Kulwa, F., McEwan, A., Aboyeji, S. T. and Khushaba, R. 2024. An Efficient Deep Transfer Learning Network for Characterization of Stroke Patients’ Motor Execution from Multi-Channel EEG-Recordings. IEEE EMBC 2024. Orlando, Florida, United States of America Jul - Aug 2024 IEEE. https://doi.org/10.1109/EMBC53108.2024.10782368
Explainable DCNN Decision Framework for Breast Lesion Classification from Ultrasound Images Based on Cancer Characteristics
AlZoubi, A., Eskandari, A., Yu, H. and Du, H. 2024. Explainable DCNN Decision Framework for Breast Lesion Classification from Ultrasound Images Based on Cancer Characteristics . Bioengineering. 11 (5), pp. 1-23. https://doi.org/10.3390/bioengineering11050453
An Experimental Study of Integrating Fine-tuned LLMs and Prompts for Enhancing Mental Health Support Chatbot System
Yu, H. and McGuinness, S. 2024. An Experimental Study of Integrating Fine-tuned LLMs and Prompts for Enhancing Mental Health Support Chatbot System. Journal of Medical Artificial Intelligence. pp. 1-16. https://doi.org/10.21037/jmai-23-1
Deep Recognition of Chinese Herbal Medicines Based on a Caputo Fractional Order Convolutional Neural Network
Tao Li, Jiawei Yang, Chenxi Li, Lulu Lv, Kang Liu, Zhipeng Yuan, Youyong Li, Hongqing Yu and Yu, H. 2024. Deep Recognition of Chinese Herbal Medicines Based on a Caputo Fractional Order Convolutional Neural Network. International Workshop on Internet of Things of Big Data for Healthcare. Springer. https://doi.org/10.1007/978-3-031-52216-1_4
Evaluation of Integrated XAI Frameworks for Explaining Disease Prediction Models in Healthcare
Yu, H., Adebola Alaba and Ebere Eziefuna 2024. Evaluation of Integrated XAI Frameworks for Explaining Disease Prediction Models in Healthcare. International Workshop on Internet of Things of Big Data for Healthcare. Springer. https://doi.org/10.1007/978-3-031-52216-1_2
Attention Enhanced Siamese Neural Network for Face Validation
Yu, H. 2023. Attention Enhanced Siamese Neural Network for Face Validation. Artificial Intelligence and Applications. 2 (1), pp. 21-27. https://doi.org/10.47852/bonviewAIA32021018
A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition
Kulwa, F., Zhang, H., Samuel, O., Asogbon, M., Scheme, E., Kushaba, R., McEwan, A. and Li, G. 2023. A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition. IEEE Transactions on Human-Machine Systems. pp. 1-12. https://doi.org/10.1109/THMS.2023.3329536
An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals
Zangene, A., Samuel, O., Abbasi, A., Nazarpour, K., McEwan, A. and Li, G. 2023. An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340791
Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors
Samuel, O., Asogbon, M., Kulwa, F., Zangene, A., Oyemakinde, T., Igbe, T., McEwan, A., Li, Y. and Li, G. 2023. Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors. 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340683
IoTBDH-2023: The 5th International Workshop on Internet of Things of Big Data for Healthcare
Qi, J., Yu, H., Yang, P., Yang, Y. and Pang, Z. 2023. IoTBDH-2023: The 5th International Workshop on Internet of Things of Big Data for Healthcare. 32nd ACM International Conference on Information and Knowledge Management (CIKM’23), Birmingham, UK. ACM. https://doi.org/10.1145/3583780.3615299
AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research
Yu, H., O'Neill, S. and Kermanizadeh, A. 2023. AIMS: An Automatic Semantic Machine Learning Microservice Framework to Support Biomedical and Bioengineering Research. Bioengineering. 10 (10), pp. 1-18. https://doi.org/10.3390/bioengineering10101134
An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running
Zangene, A. R., Samuel, O., Abbasi, A., McEwan, A., Asogbon, M. G., Li, G. and Nazarpour, K. 2023. An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running. Biomedical Signal Processing and Control. 86 (B), pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105103
Learning Disease Causality Knowledge from Web of Health Data
Yu, H. and Reiff-Marganiec, S. 2022. Learning Disease Causality Knowledge from Web of Health Data. International journal on semantic web and information systems. 18 (1), pp. 1-19. https://doi.org/10.4018/IJSWIS.297145
A systematic literature review of machine learning applications for community-acquired pneumonia
Lozano-Rojas, Daniel, Free, Robert C., McEwan, Alistair A. and Woltmann, Gerrit 2021. A systematic literature review of machine learning applications for community-acquired pneumonia. in: Lecture Notes in Electrical Engineering Springer.
Bringing the Blessing of Dimensionality to the Edge
Tyukin, Ivan Y., Gorban, Alexander N, McEwan, Alistair and Meshkinfamfard, Sepehr 2019. Bringing the Blessing of Dimensionality to the Edge. IEEE. https://doi.org/10.1109/iciai.2019.8850825
Targeted ensemble machine classification approach for supporting IOT enabled skin disease detection
Yu, H. and Reiff-Marganiec, S. 2021. Targeted ensemble machine classification approach for supporting IOT enabled skin disease detection. IEEE Access. 9, pp. 50244-50252. https://doi.org/10.1109/ACCESS.2021.3069024
Blessing of dimensionality at the edge and geometry of few-shot learning
Tyukin, Ivan Y., Gorban, Alexander N., McEwan, Alistair A., Meshkinfamfard, Sepehr and Tang, Lixin 2021. Blessing of dimensionality at the edge and geometry of few-shot learning. Information Sciences. 564, pp. 124-143. https://doi.org/10.1016/j.ins.2021.01.022
Experimental Disease Prediction Research on Combining Natural Language Processing and Machine Learning
Yu, H. 2020. Experimental Disease Prediction Research on Combining Natural Language Processing and Machine Learning. IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT). IEEE Xplore. https://doi.org/10.1109/iccsnt47585.2019.8962507
Dynamic Causality Knowledge Graph Generation for Supporting the Chatbot Healthcare System
Yu, H. 2020. Dynamic Causality Knowledge Graph Generation for Supporting the Chatbot Healthcare System. in: Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3 New York Springer.
Low-Cost and Data Anonymised City Traffic Flow Data Collection to Support Intelligent Traffic System
Handscombe, J. and Yu, H. 2019. Low-Cost and Data Anonymised City Traffic Flow Data Collection to Support Intelligent Traffic System. Sensors. 19 (2), p. 347. https://doi.org/10.3390/s19020347
Semantic Lifting and Reasoning on the Personalised Activity Big Data Repository for Healthcare Research
Yu, H. and Dong, F. 2019. Semantic Lifting and Reasoning on the Personalised Activity Big Data Repository for Healthcare Research. International Journal of Web Engineering and Technology. 14 (2), pp. 103 - 121.
Mining Symptom and Disease Web Data with NLP and Open Linked Data
Yu, H. 2019. Mining Symptom and Disease Web Data with NLP and Open Linked Data. 5th World Congress on Electrical Engineering and Computer Systems and Sciences (EECSS’19) Lisbon, Portugal – August, 2019. https://doi.org/10.11159/mvml19.108
A linear logic approach to the composition of RESTful web services
Zhao, X., Liu, E., Yu, H. and Clapworthy, G.J. 2015. A linear logic approach to the composition of RESTful web services. International Journal of Web Engineering and Technology. 10 (3), pp. 245-271. https://doi.org/10.1504/ijwet.2015.072348
Socio-semantic Integration of Educational Resources - the Case of the mEducator Project
Dietze, Stefan, Kaldoudi, Eleni, Dovrolis, Nikolas, Giordano, Daniela, Spampinato, Concetto, Hendrix, Maurice, Protopsaltis, Aristidis, Taibi, v and Yu, H. 2013. Socio-semantic Integration of Educational Resources - the Case of the mEducator Project. Journal of Universal Computer Science. 19 (11), pp. 1-27. https://doi.org/10.3217/jucs-019-11-1543
Interlinking educational resources and the web of data
Dietze, S., Sanchez‐Alonso, S., Ebner, H., Yu, H., Giordano, D., Marenzi, I. and Pereira Nunes, B. 2013. Interlinking educational resources and the web of data. Program. 47 (1). https://doi.org/10.1108/00330331211296312
Using Linked Data to Annotate and Search Educational Video Resources for Supporting Distance Learning
Yu, H., Pedrinaci, C., Dietze, S. and Domingue, J. 2012. Using Linked Data to Annotate and Search Educational Video Resources for Supporting Distance Learning. IEEE Transactions on Learning Technologies. 5 (2), pp. 130-142. https://doi.org/10.1109/tlt.2012.1
An automated approach to Semantic Web Services Mediation
Dietze, S., Gugliotta, A., Domingue, J., Yu, H. and Mrissa, M. 2010. An automated approach to Semantic Web Services Mediation. Service Oriented Computing and Applications. 4, p. 261–275. https://doi.org/10.1007/s11761-010-0070-7