Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors
Conference paper
Authors | Samuel, O., Asogbon, M., Kulwa, F., Zangene, A., Oyemakinde, T., Igbe, T., McEwan, A., Li, Y. and Li, G. |
---|---|
Type | Conference paper |
Abstract | Motor function loss greatly impacts post-stroke survivors while performing activities of daily living. In the recent years, intelligent rehabilitation robotics have been proposed to enable the patients recover their lost limb functions. Besides, a large proportion of these robots function in passive mode that only allow users to navigate trajectories that rarely align with their limb movement intent, thus precluding full functional recovery. A potential solution would be to explore utilizing an efficient Transfer Learning based Convolutional Neural Network (TL-CNN) to decode multiple classes of post-stroke patients’ motion intentions towards realizing dexterously active robotic training during rehabilitation. In this regard, we propose and examined for the first time, the use of Spatial-Temporal Descriptor based Continuous Wavelet Transform (STD-CWT) as input to TL-CNN to optimally decode limb movement intent patterns of stroke patients to provide adequate input for active motor training in rehabilitation robots. Importantly, we examined the proposed (STD-CWT) method on three distinct wavelets including the Morse, Amor, and Bump, and compared their decoding outcomes with those of the commonly adopted CWT technique under similar experimental conditions. Our method was validated using electromyogram signals of five stroke survivors who performed up to twenty-two distinct limb motions. The obtained results showed that the proposed technique recorded a significantly higher decoding (p<0.05) and converges faster compared to the commonly adopted method. The proposed method equally recorded obvious class separability for individual movement classes across the stroke patients. Findings from this study suggest that the STD-CWT Scalograms would provide potential inputs for robust decoding of motor intent that may facilitate intuitively active motor training in stroke rehabilitation robots. © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Keywords | Rehabilitation Technology; AI and Machine Learning; Electromyogram; Pattern Recognition; Stroke Patients |
Year | 2023 |
Conference | 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
Publisher | IEEE |
ISSN | 2694-0604 |
Digital Object Identifier (DOI) | https://doi.org/10.1109/EMBC40787.2023.10340683 |
Web address (URL) | https://www.embs.org/event/embc-embs-org-2023/ |
Accepted author manuscript | License All rights reserved File Access Level Open |
Journal citation | pp. 1-5 |
ISBN | 9798350324471 |
Web address (URL) of conference proceedings | https://embc.embs.org/2023/ |
Output status | Published |
Publication dates | |
Online | 11 Dec 2023 |
Publication process dates | |
Accepted | Apr 2023 |
Deposited | 18 Dec 2023 |
https://repository.derby.ac.uk/item/q32q0/enhanced-deep-transfer-learning-model-based-on-spatial-temporal-driven-scalograms-for-precise-decoding-of-motor-intent-in-stroke-survivors
Download files
Accepted author manuscript
Manuscript_EMBC_2023_OWS_UDORA_Uploaded.pdf | ||
License: All rights reserved | ||
File access level: Open |
39
total views33
total downloads1
views this month1
downloads this month
Export as
Related outputs
On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †
Samuel, O. 2024. On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †. Engineering Proceedings. 58 (1). https://doi.org/10.3390/ecsa-10-16231Bio-Magneto Sensing and Unsupervised Deep Multiresolution Analysis for Labor Predictions in Term and Preterm Pregnancies †
Samuel, O. 2024. Bio-Magneto Sensing and Unsupervised Deep Multiresolution Analysis for Labor Predictions in Term and Preterm Pregnancies †. Engineering Proceedings. 58 (1). https://doi.org/10.3390/ecsa-10-16245Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries
Karmani, P., Chandio, A. A., Korejo, I. A., Samuel, O. and Aborokbah, M. 2024. Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries. Peer J Computer Science . pp. 1-20. https://doi.org/10.7717/peerj-cs.2397Robust Epileptic Seizure Detection Based on Biomedical Signals Using an Advanced Multi-View Deep Feature Learning Approach
Ahmad, I., Liu, Z., Li, L., Ullah, I., Wang, X., Samuel, O., Li, G., Tao, Y., Chen, Y. and Chen, S. 2024. Robust Epileptic Seizure Detection Based on Biomedical Signals Using an Advanced Multi-View Deep Feature Learning Approach. IEEE Journal of Biomedical and Health Informatics. pp. 1-13. https://doi.org/10.1109/JBHI.2024.3396130A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization
Samuel, O., Asogbon, M. and McEwan, A. 2024. A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization. Biomedical Signal Processing and Control. 95 (2024), p. 106446. https://doi.org/https://doi.org/10.1016/j.bspc.2024.106446Exploring EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis
Igbe, T., Kandwal, A., Li, J., Kulwa, F., Samuel, O. and Nie, Z. 2024. Exploring EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis. IEEE Transactions on Instrumentation and Measurements. 73, pp. 1-8. https://doi.org/10.1109/TIM.2024.3400333A Pilot on the use of Stride Cadence for the Charac-terization of Walking Ability in Lower Limb Ampu-tees
Nsugbe, E., Samuel, O., Asogbon, M. and Jose, J. R. L. 2024. A Pilot on the use of Stride Cadence for the Charac-terization of Walking Ability in Lower Limb Ampu-tees. Biomedical Engineering Advances. 7 (2024), pp. 1-10. https://doi.org/10.1016/j.bea.2024.100117Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization
Asogbon, M.G., Samuel, O., Meziane, F., Li, G. and Li, Y. 2024. Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization. 17th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSIGNALS. SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0012373400003657Continuous Kalman Estimation Method for Finger Kinematics Tracking from Surface Electromyography
Zhang, H., Peng, B., Tian, L., Samuel, O. and Li, G. 2024. Continuous Kalman Estimation Method for Finger Kinematics Tracking from Surface Electromyography. Cyborg and Bionic Systems. pp. 1-11. https://doi.org/10.34133/cbsystems.0094An Efficient Feature Selection and Explainable Classification Method for EEG-based Epileptic Seizure Detection
Ahmad, I., Yao, C., Li, L., Chen, Y., Liu, Z., Ullah, I., Shabaz, M., Wang, X., Huang, K., Li, G., Zhao, G., Samuel, O. and Chen, S. 2023. An Efficient Feature Selection and Explainable Classification Method for EEG-based Epileptic Seizure Detection. Journal of Information Security and Applications. 80, pp. 1-17. https://doi.org/10.1016/j.jisa.2023.103654Towards Adequate Policy Enhancement: An AI-Driven Decision Tree Model for Efficient Recognition and Classification of EPA Status via Multi-Emission Parameters
Awomuti, A., Alimo, P., Young, G., Agyeman, S., Akintunde, T., Agbeja, A., Oderinde, O., Samuel, O. and Otobrise, H. 2023. Towards Adequate Policy Enhancement: An AI-Driven Decision Tree Model for Efficient Recognition and Classification of EPA Status via Multi-Emission Parameters. City and Environment Interactions. 20, pp. 1-12. https://doi.org/10.1016/j.cacint.2023.100127A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition
Kulwa, F., Zhang, H., Samuel, O., Asogbon, M., Scheme, E., Kushaba, R., McEwan, A. and Li, G. 2023. A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition. IEEE Transactions on Human-Machine Systems. pp. 1-12. https://doi.org/10.1109/THMS.2023.3329536Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor
Asogbon, M., Huai, Y., Samuel, O., Jing, Z., Ma, Y., Liu, J., Jiang, Y., Fu, Y., Li, G. and Li, Y. 2023. Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE Xplore. https://doi.org/https://doi.org/10.1109/EMBC40787.2023.10340688An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals
Zangene, A., Samuel, O., Abbasi, A., Nazarpour, K., McEwan, A. and Li, G. 2023. An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340791Inspection of EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis
Igbe, T., Samuel, O.W., Li, J., Kulwa, F., Kandwal, A. and Nie, Z. 2023. Inspection of EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis. IEEE International Workshop on Medical Measurement and Applications (MEMEA). IEEE. https://doi.org/10.1109/MeMeA57477.2023.10171941A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems
Kulwa, F., Samuel, O.W., Asogbon, M., Oyemakinde, T.T., Obe, O.O. and Li, G. 2023. A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems. 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE. https://doi.org/10.1109/MeMeA57477.2023.10171910An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running
Zangene, A. R., Samuel, O., Abbasi, A., McEwan, A., Asogbon, M. G., Li, G. and Nazarpour, K. 2023. An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running. Biomedical Signal Processing and Control. 86 (B), pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105103A Hybrid Strategy-based Ultra-narrow Stretchable Microelectrodes with Cell-level Resolution
Li, F., Han, F., Wang, L., Huang, L., Samuel, O.W., Zhao, H., Xie, R., Wang, P., Tian, Q., Li, Q., Zhao, Y., Yu, Mei, Sun, J., Yang, R., Zhou, X., Li, F., Li, G., Lu, Y., Guo, P. and Liu, Z. 2023. A Hybrid Strategy-based Ultra-narrow Stretchable Microelectrodes with Cell-level Resolution. Advanced Functional Materials. 2300859, pp. 1-9. https://doi.org/10.1002/adfm.202300859On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines
Nsugbe, E., Reyes-Lagos, J.J., Adams, D. and Samuel, O. 2023. On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines. Healthcare Technology Letters. 10 (1-2), pp. 11-22. https://doi.org/10.1049/htl2.12044Surface Electromyogram, Kinematic, and Kinetic Dataset of Lower Limb Walking for Movement Intent Recognition
Wei, W., Tan, F., Zhang, H., Mao, H., Fu, M., Samuel, O.W. and Li, G. 2023. Surface Electromyogram, Kinematic, and Kinetic Dataset of Lower Limb Walking for Movement Intent Recognition. Nature Scientific Data. 10 (358), pp. 1-16. https://doi.org/10.1038/s41597-023-02263-3A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals
Ahmad, I., Wang, X., Javeed, D., Kumar, P., Samuel, O.W. and Chen, S. 2023. A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2023.3265983
A systematic literature review of machine learning applications for community-acquired pneumonia
Lozano-Rojas, Daniel, Free, Robert C., McEwan, Alistair A. and Woltmann, Gerrit 2021. A systematic literature review of machine learning applications for community-acquired pneumonia. in: Lecture Notes in Electrical Engineering Springer.