A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization

Journal article


Samuel, O., Asogbon, M. and McEwan, A. 2024. A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization. Biomedical Signal Processing and Control. 95 (2024), p. 106446. https://doi.org/https://doi.org/10.1016/j.bspc.2024.106446
AuthorsSamuel, O., Asogbon, M. and McEwan, A.
Abstract

The lack of a robust scheme that can withstand the muscle contraction force variations (MCFV) in pattern recognition (PR)-based myoelectric prosthesis is a major challenge that prevents it from being fully realized in clinical settings. To overcome this issue, a novel feature adaptation scheme which partially leverages the non-Euclidean space concept based on Riemann manifold was proposed in this study. The scheme is comprised of three logically connected stages. The first stage leverages the symmetric positive definite (SPD) matrices as features. The second stage reduces the discrepancy between SPDs of different force levels by projecting all the SPDs towards a Riemann mean, while the third stage reinforces the robustness against MCFV by projecting the features toward a common distribution drawn from the training set. While considering the three force levels, the scheme was validated on in-house and public datasets obtained from amputees who performed different wrist and finger movements. The results of the evaluation revealed that the suggested method could greatly address the issue of MCFV with an increment in movement decoding greater than 15.02% accuracy and 16.50% F1-score against other state-of-the-art techniques. Additional investigation on the suitable force level that could be a benchmark for training showed that the moderate force level would give an optimal performance compared to low, or high force level in the presence of MCFV. The findings of the study revealed that the suggested control scheme could be used to adapt to MCFV, which could improve the overall robustness of myoelectric systems in both commercial and clinical applications.

KeywordsUpper limb prostheses ; Electromyogram (EMG); Riemann manifold; Symmetric positive definite (SPD) matrice; Pattern recognition
Year2024
JournalBiomedical Signal Processing and Control
Journal citation95 (2024), p. 106446
PublisherElsevier BV
ISSN1746-8094
Digital Object Identifier (DOI)https://doi.org/https://doi.org/10.1016/j.bspc.2024.106446
Web address (URL)https://www.sciencedirect.com/science/article/pii/S1746809424005044
Accepted author manuscript
License
File Access Level
Controlled
Output statusPublished
Publication dates
Online24 May 2024
Publication process dates
Accepted10 May 2024
Deposited24 Jul 2024
Permalink -

https://repository.derby.ac.uk/item/q7478/a-robust-feature-adaptation-approach-against-variation-of-muscle-contraction-forces-for-myoelectric-pattern-recognition-based-gesture-characterization

Restricted files

Accepted author manuscript

  • 26
    total views
  • 1
    total downloads
  • 8
    views this month
  • 0
    downloads this month

Export as

Related outputs

On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †
Samuel, O. 2024. On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †. Engineering Proceedings. 58 (1). https://doi.org/10.3390/ecsa-10-16231
Bio-Magneto Sensing and Unsupervised Deep Multiresolution Analysis for Labor Predictions in Term and Preterm Pregnancies †
Samuel, O. 2024. Bio-Magneto Sensing and Unsupervised Deep Multiresolution Analysis for Labor Predictions in Term and Preterm Pregnancies †. Engineering Proceedings. 58 (1). https://doi.org/10.3390/ecsa-10-16245
Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries
Karmani, P., Chandio, A. A., Korejo, I. A., Samuel, O. and Aborokbah, M. 2024. Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries. Peer J Computer Science . pp. 1-20. https://doi.org/10.7717/peerj-cs.2397
Robust Epileptic Seizure Detection Based on Biomedical Signals Using an Advanced Multi-View Deep Feature Learning Approach
Ahmad, I., Liu, Z., Li, L., Ullah, I., Wang, X., Samuel, O., Li, G., Tao, Y., Chen, Y. and Chen, S. 2024. Robust Epileptic Seizure Detection Based on Biomedical Signals Using an Advanced Multi-View Deep Feature Learning Approach. IEEE Journal of Biomedical and Health Informatics. pp. 1-13. https://doi.org/10.1109/JBHI.2024.3396130
Exploring EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis
Igbe, T., Kandwal, A., Li, J., Kulwa, F., Samuel, O. and Nie, Z. 2024. Exploring EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis. IEEE Transactions on Instrumentation and Measurements. 73, pp. 1-8. https://doi.org/10.1109/TIM.2024.3400333
A Pilot on the use of Stride Cadence for the Charac-terization of Walking Ability in Lower Limb Ampu-tees
Nsugbe, E., Samuel, O., Asogbon, M. and Jose, J. R. L. 2024. A Pilot on the use of Stride Cadence for the Charac-terization of Walking Ability in Lower Limb Ampu-tees. Biomedical Engineering Advances. 7 (2024), pp. 1-10. https://doi.org/10.1016/j.bea.2024.100117
Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization
Asogbon, M.G., Samuel, O., Meziane, F., Li, G. and Li, Y. 2024. Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization. 17th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSIGNALS. SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0012373400003657
Continuous Kalman Estimation Method for Finger Kinematics Tracking from Surface Electromyography
Zhang, H., Peng, B., Tian, L., Samuel, O. and Li, G. 2024. Continuous Kalman Estimation Method for Finger Kinematics Tracking from Surface Electromyography. Cyborg and Bionic Systems. pp. 1-11. https://doi.org/10.34133/cbsystems.0094
An Efficient Feature Selection and Explainable Classification Method for EEG-based Epileptic Seizure Detection
Ahmad, I., Yao, C., Li, L., Chen, Y., Liu, Z., Ullah, I., Shabaz, M., Wang, X., Huang, K., Li, G., Zhao, G., Samuel, O. and Chen, S. 2023. An Efficient Feature Selection and Explainable Classification Method for EEG-based Epileptic Seizure Detection. Journal of Information Security and Applications. 80, pp. 1-17. https://doi.org/10.1016/j.jisa.2023.103654
Towards Adequate Policy Enhancement: An AI-Driven Decision Tree Model for Efficient Recognition and Classification of EPA Status via Multi-Emission Parameters
Awomuti, A., Alimo, P., Young, G., Agyeman, S., Akintunde, T., Agbeja, A., Oderinde, O., Samuel, O. and Otobrise, H. 2023. Towards Adequate Policy Enhancement: An AI-Driven Decision Tree Model for Efficient Recognition and Classification of EPA Status via Multi-Emission Parameters. City and Environment Interactions. 20, pp. 1-12. https://doi.org/10.1016/j.cacint.2023.100127
A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition
Kulwa, F., Zhang, H., Samuel, O., Asogbon, M., Scheme, E., Kushaba, R., McEwan, A. and Li, G. 2023. A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition. IEEE Transactions on Human-Machine Systems. pp. 1-12. https://doi.org/10.1109/THMS.2023.3329536
Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor
Asogbon, M., Huai, Y., Samuel, O., Jing, Z., Ma, Y., Liu, J., Jiang, Y., Fu, Y., Li, G. and Li, Y. 2023. Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE Xplore. https://doi.org/https://doi.org/10.1109/EMBC40787.2023.10340688
An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals
Zangene, A., Samuel, O., Abbasi, A., Nazarpour, K., McEwan, A. and Li, G. 2023. An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340791
Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors
Samuel, O., Asogbon, M., Kulwa, F., Zangene, A., Oyemakinde, T., Igbe, T., McEwan, A., Li, Y. and Li, G. 2023. Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors. 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340683
Inspection of EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis
Igbe, T., Samuel, O.W., Li, J., Kulwa, F., Kandwal, A. and Nie, Z. 2023. Inspection of EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis. IEEE International Workshop on Medical Measurement and Applications (MEMEA). IEEE. https://doi.org/10.1109/MeMeA57477.2023.10171941
A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems
Kulwa, F., Samuel, O.W., Asogbon, M., Oyemakinde, T.T., Obe, O.O. and Li, G. 2023. A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems. 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE. https://doi.org/10.1109/MeMeA57477.2023.10171910
An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running
Zangene, A. R., Samuel, O., Abbasi, A., McEwan, A., Asogbon, M. G., Li, G. and Nazarpour, K. 2023. An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running. Biomedical Signal Processing and Control. 86 (B), pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105103
A Hybrid Strategy-based Ultra-narrow Stretchable Microelectrodes with Cell-level Resolution
Li, F., Han, F., Wang, L., Huang, L., Samuel, O.W., Zhao, H., Xie, R., Wang, P., Tian, Q., Li, Q., Zhao, Y., Yu, Mei, Sun, J., Yang, R., Zhou, X., Li, F., Li, G., Lu, Y., Guo, P. and Liu, Z. 2023. A Hybrid Strategy-based Ultra-narrow Stretchable Microelectrodes with Cell-level Resolution. Advanced Functional Materials. 2300859, pp. 1-9. https://doi.org/10.1002/adfm.202300859
On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines
Nsugbe, E., Reyes-Lagos, J.J., Adams, D. and Samuel, O. 2023. On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines. Healthcare Technology Letters. 10 (1-2), pp. 11-22. https://doi.org/10.1049/htl2.12044
Surface Electromyogram, Kinematic, and Kinetic Dataset of Lower Limb Walking for Movement Intent Recognition
Wei, W., Tan, F., Zhang, H., Mao, H., Fu, M., Samuel, O.W. and Li, G. 2023. Surface Electromyogram, Kinematic, and Kinetic Dataset of Lower Limb Walking for Movement Intent Recognition. Nature Scientific Data. 10 (358), pp. 1-16. https://doi.org/10.1038/s41597-023-02263-3
A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals
Ahmad, I., Wang, X., Javeed, D., Kumar, P., Samuel, O.W. and Chen, S. 2023. A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2023.3265983
A systematic literature review of machine learning applications for community-acquired pneumonia
Lozano-Rojas, Daniel, Free, Robert C., McEwan, Alistair A. and Woltmann, Gerrit 2021. A systematic literature review of machine learning applications for community-acquired pneumonia. in: Lecture Notes in Electrical Engineering Springer.
Bringing the Blessing of Dimensionality to the Edge
Tyukin, Ivan Y., Gorban, Alexander N, McEwan, Alistair and Meshkinfamfard, Sepehr 2019. Bringing the Blessing of Dimensionality to the Edge. IEEE. https://doi.org/10.1109/iciai.2019.8850825
Blessing of dimensionality at the edge and geometry of few-shot learning
Tyukin, Ivan Y., Gorban, Alexander N., McEwan, Alistair A., Meshkinfamfard, Sepehr and Tang, Lixin 2021. Blessing of dimensionality at the edge and geometry of few-shot learning. Information Sciences. 564, pp. 124-143. https://doi.org/10.1016/j.ins.2021.01.022