Blessing of dimensionality at the edge and geometry of few-shot learning
Journal article
Authors | Tyukin, Ivan Y., Gorban, Alexander N., McEwan, Alistair A., Meshkinfamfard, Sepehr and Tang, Lixin |
---|---|
Abstract | In this paper we present theory and algorithms enabling classes of Artificial Intelligence (AI) systems to continuously and incrementally improve with a priori quantifiable guarantees – or more specifically remove classification errors – over time. This is distinct from state-of-the-art machine learning, AI, and software approaches. The theory enables building few-shot AI correction algorithms and provides conditions justifying their successful application. Another feature of this approach is that, in the supervised setting, the computational complexity of training is linear in the number of training samples. At the time of classification, the computational complexity is bounded by few inner product calculations. Moreover, the implementation is shown to be very scalable. This makes it viable for deployment in applications where computational power and memory are limited, such as embedded environments. It enables the possibility for fast on-line optimisation using improved training samples. The approach is based on the concentration of measure effects and stochastic separation theorems and is illustrated with an example on the identification faulty processes in Computer Numerical Control (CNC) milling and with a case study on adaptive removal of false positives in an industrial video surveillance and analytics system. |
Keywords | Control and Systems Engineering; Theoretical Computer Science; Software; Information Systems and Management; Artificial Intelligence; Computer Science Applications |
Year | 2021 |
Journal | Information Sciences |
Journal citation | 564, pp. 124-143 |
Publisher | Elsevier BV |
ISSN | 0020-0255 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.ins.2021.01.022 |
Web address (URL) | hdl:10545/625663 |
https://www.sciencedirect.com/science/article/pii/S0020025521000499?via%3Dihub | |
Output status | Published |
Publication dates | 03 Feb 2021 |
Publication process dates | |
Deposited | 22 Mar 2021, 14:22 |
Accepted | 08 Jan 2021 |
Contributors | University of Leicester, Lobachevsky University, Russia, St Petersburg State Electrotechnical University, Russia, University College London, Northeastern University, China, Norwegian University of Science and Technology, Norway and University of Derby |
File | File Access Level Restricted |
https://repository.derby.ac.uk/item/936x1/blessing-of-dimensionality-at-the-edge-and-geometry-of-few-shot-learning
64
total views0
total downloads7
views this month0
downloads this month