An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals

Conference paper


Zangene, A., Samuel, O., Abbasi, A., Nazarpour, K., McEwan, A. and Li, G. 2023. An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340791
AuthorsZangene, A., Samuel, O., Abbasi, A., Nazarpour, K., McEwan, A. and Li, G.
TypeConference paper
Abstract

Running is an essential locomotion activity that plays a critical role in everyday life and exercise activities and may be impeded by joint disease and neurological impairments. Accurate and robust estimation of joint kinematics via surface electromyogram (sEMG) signals provides a human-machine interaction-based method that can be used to adequately control rehabilitation robots while performing complex movements such as running for motor function restoration in affected persons. To this end, this paper proposes a novel deep learning-based model (AM-BiLSTM) that integrates an attention mechanism (AM) and a bidirectional long short-term memory (BiLSTM) network. The proposed method was evaluated using knee joint kinematic and sEMG signals of fourteen subjects who performed running at 2 m/s speed. The proposed model’s generalizability was tested for within- and cross-subject scenarios and compared with standard LSTM and multi-layer perceptron (MLP) networks in terms of normalized root-mean-square error and correlation coefficient evaluation metrics. Based on the statistical tests, the proposed AM-BiLSTM model significantly outperformed the LSTM and MLP methods in both within- and cross-subject scenarios (p<0.05) and achieved state-of-the-art performance.

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

KeywordsLower Limb Rehabilitation; Prosthesis; Electromyogram; Pattern Recognition
Year2023
Conference45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society
PublisherIEEE
ISSN2694-0604
Digital Object Identifier (DOI)https://doi.org/10.1109/EMBC40787.2023.10340791
Web address (URL)https://www.embs.org/event/embc-embs-org-2023/
Accepted author manuscript
License
All rights reserved
File Access Level
Open
Journal citationpp. 1-5
ISBN9798350324471
Web address (URL) of conference proceedingshttps://embc.embs.org/2023/
Output statusPublished
Publication dates
Online11 Dec 2023
Publication process dates
AcceptedApr 2023
Deposited18 Dec 2023
Permalink -

https://repository.derby.ac.uk/item/q32v1/an-attention-based-bidirectional-lstm-model-for-continuous-cross-subject-estimation-of-knee-joint-angle-during-running-from-semg-signals

Download files


Accepted author manuscript
Manuscript_EMBC2023_ARZ_UDORA_Uploaded.pdf
License: All rights reserved
File access level: Open

  • 35
    total views
  • 33
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †
Samuel, O. 2024. On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †. Engineering Proceedings. 58 (1). https://doi.org/10.3390/ecsa-10-16231
Bio-Magneto Sensing and Unsupervised Deep Multiresolution Analysis for Labor Predictions in Term and Preterm Pregnancies †
Samuel, O. 2024. Bio-Magneto Sensing and Unsupervised Deep Multiresolution Analysis for Labor Predictions in Term and Preterm Pregnancies †. Engineering Proceedings. 58 (1). https://doi.org/10.3390/ecsa-10-16245
Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries
Karmani, P., Chandio, A. A., Korejo, I. A., Samuel, O. and Aborokbah, M. 2024. Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries. Peer J Computer Science . pp. 1-20. https://doi.org/10.7717/peerj-cs.2397
Robust Epileptic Seizure Detection Based on Biomedical Signals Using an Advanced Multi-View Deep Feature Learning Approach
Ahmad, I., Liu, Z., Li, L., Ullah, I., Wang, X., Samuel, O., Li, G., Tao, Y., Chen, Y. and Chen, S. 2024. Robust Epileptic Seizure Detection Based on Biomedical Signals Using an Advanced Multi-View Deep Feature Learning Approach. IEEE Journal of Biomedical and Health Informatics. pp. 1-13. https://doi.org/10.1109/JBHI.2024.3396130
A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization
Samuel, O., Asogbon, M. and McEwan, A. 2024. A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization. Biomedical Signal Processing and Control. 95 (2024), p. 106446. https://doi.org/https://doi.org/10.1016/j.bspc.2024.106446
Exploring EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis
Igbe, T., Kandwal, A., Li, J., Kulwa, F., Samuel, O. and Nie, Z. 2024. Exploring EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis. IEEE Transactions on Instrumentation and Measurements. 73, pp. 1-8. https://doi.org/10.1109/TIM.2024.3400333
A Pilot on the use of Stride Cadence for the Charac-terization of Walking Ability in Lower Limb Ampu-tees
Nsugbe, E., Samuel, O., Asogbon, M. and Jose, J. R. L. 2024. A Pilot on the use of Stride Cadence for the Charac-terization of Walking Ability in Lower Limb Ampu-tees. Biomedical Engineering Advances. 7 (2024), pp. 1-10. https://doi.org/10.1016/j.bea.2024.100117
Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization
Asogbon, M.G., Samuel, O., Meziane, F., Li, G. and Li, Y. 2024. Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization. 17th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSIGNALS. SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0012373400003657
Continuous Kalman Estimation Method for Finger Kinematics Tracking from Surface Electromyography
Zhang, H., Peng, B., Tian, L., Samuel, O. and Li, G. 2024. Continuous Kalman Estimation Method for Finger Kinematics Tracking from Surface Electromyography. Cyborg and Bionic Systems. pp. 1-11. https://doi.org/10.34133/cbsystems.0094
An Efficient Feature Selection and Explainable Classification Method for EEG-based Epileptic Seizure Detection
Ahmad, I., Yao, C., Li, L., Chen, Y., Liu, Z., Ullah, I., Shabaz, M., Wang, X., Huang, K., Li, G., Zhao, G., Samuel, O. and Chen, S. 2023. An Efficient Feature Selection and Explainable Classification Method for EEG-based Epileptic Seizure Detection. Journal of Information Security and Applications. 80, pp. 1-17. https://doi.org/10.1016/j.jisa.2023.103654
Towards Adequate Policy Enhancement: An AI-Driven Decision Tree Model for Efficient Recognition and Classification of EPA Status via Multi-Emission Parameters
Awomuti, A., Alimo, P., Young, G., Agyeman, S., Akintunde, T., Agbeja, A., Oderinde, O., Samuel, O. and Otobrise, H. 2023. Towards Adequate Policy Enhancement: An AI-Driven Decision Tree Model for Efficient Recognition and Classification of EPA Status via Multi-Emission Parameters. City and Environment Interactions. 20, pp. 1-12. https://doi.org/10.1016/j.cacint.2023.100127
A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition
Kulwa, F., Zhang, H., Samuel, O., Asogbon, M., Scheme, E., Kushaba, R., McEwan, A. and Li, G. 2023. A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition. IEEE Transactions on Human-Machine Systems. pp. 1-12. https://doi.org/10.1109/THMS.2023.3329536
Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor
Asogbon, M., Huai, Y., Samuel, O., Jing, Z., Ma, Y., Liu, J., Jiang, Y., Fu, Y., Li, G. and Li, Y. 2023. Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE Xplore. https://doi.org/https://doi.org/10.1109/EMBC40787.2023.10340688
Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors
Samuel, O., Asogbon, M., Kulwa, F., Zangene, A., Oyemakinde, T., Igbe, T., McEwan, A., Li, Y. and Li, G. 2023. Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors. 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340683
Inspection of EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis
Igbe, T., Samuel, O.W., Li, J., Kulwa, F., Kandwal, A. and Nie, Z. 2023. Inspection of EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis. IEEE International Workshop on Medical Measurement and Applications (MEMEA). IEEE. https://doi.org/10.1109/MeMeA57477.2023.10171941
A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems
Kulwa, F., Samuel, O.W., Asogbon, M., Oyemakinde, T.T., Obe, O.O. and Li, G. 2023. A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems. 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE. https://doi.org/10.1109/MeMeA57477.2023.10171910
An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running
Zangene, A. R., Samuel, O., Abbasi, A., McEwan, A., Asogbon, M. G., Li, G. and Nazarpour, K. 2023. An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running. Biomedical Signal Processing and Control. 86 (B), pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105103
A Hybrid Strategy-based Ultra-narrow Stretchable Microelectrodes with Cell-level Resolution
Li, F., Han, F., Wang, L., Huang, L., Samuel, O.W., Zhao, H., Xie, R., Wang, P., Tian, Q., Li, Q., Zhao, Y., Yu, Mei, Sun, J., Yang, R., Zhou, X., Li, F., Li, G., Lu, Y., Guo, P. and Liu, Z. 2023. A Hybrid Strategy-based Ultra-narrow Stretchable Microelectrodes with Cell-level Resolution. Advanced Functional Materials. 2300859, pp. 1-9. https://doi.org/10.1002/adfm.202300859
On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines
Nsugbe, E., Reyes-Lagos, J.J., Adams, D. and Samuel, O. 2023. On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines. Healthcare Technology Letters. 10 (1-2), pp. 11-22. https://doi.org/10.1049/htl2.12044
Surface Electromyogram, Kinematic, and Kinetic Dataset of Lower Limb Walking for Movement Intent Recognition
Wei, W., Tan, F., Zhang, H., Mao, H., Fu, M., Samuel, O.W. and Li, G. 2023. Surface Electromyogram, Kinematic, and Kinetic Dataset of Lower Limb Walking for Movement Intent Recognition. Nature Scientific Data. 10 (358), pp. 1-16. https://doi.org/10.1038/s41597-023-02263-3
A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals
Ahmad, I., Wang, X., Javeed, D., Kumar, P., Samuel, O.W. and Chen, S. 2023. A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2023.3265983
A systematic literature review of machine learning applications for community-acquired pneumonia
Lozano-Rojas, Daniel, Free, Robert C., McEwan, Alistair A. and Woltmann, Gerrit 2021. A systematic literature review of machine learning applications for community-acquired pneumonia. in: Lecture Notes in Electrical Engineering Springer.
Bringing the Blessing of Dimensionality to the Edge
Tyukin, Ivan Y., Gorban, Alexander N, McEwan, Alistair and Meshkinfamfard, Sepehr 2019. Bringing the Blessing of Dimensionality to the Edge. IEEE. https://doi.org/10.1109/iciai.2019.8850825
Blessing of dimensionality at the edge and geometry of few-shot learning
Tyukin, Ivan Y., Gorban, Alexander N., McEwan, Alistair A., Meshkinfamfard, Sepehr and Tang, Lixin 2021. Blessing of dimensionality at the edge and geometry of few-shot learning. Information Sciences. 564, pp. 124-143. https://doi.org/10.1016/j.ins.2021.01.022