Modern Myoelectric Control – Is it Time to Change the Algorithmic Focus?

Conference paper


Khushaba, R. N., Samuel, O., Al-Timemy, A. H. and Li, G. 2024. Modern Myoelectric Control – Is it Time to Change the Algorithmic Focus? IEEE EMBC 2024. Orlando, Florida, United States of America Jul - Aug 2024 IEEE. https://doi.org/10.1109/EMBC53108.2024.10782511
AuthorsKhushaba, R. N., Samuel, O., Al-Timemy, A. H. and Li, G.
TypeConference paper
Abstract

This paper explores the evolving landscape of Electromyogram (EMG) signal analysis, focusing on the growing prominence of deep learning (DL) algorithms for hand, wrist, and finger movement recognition. Such algorithms often come with high computational costs, potentially limiting clinical translation on resource-limited devices, and igniting more research on reduced complexity models. This prompts the question: is it time to shift the algorithmic focus in EMG pattern recognition, given the reported performance of some light-weight traditional or hybrid methods emphasizing synergy between different EMG signals? A comparative study is implemented between state-of the-art deep learning extension for time series classification, denoted as Random Convolutional Kernel Transform (ROCKET), and simple, yet effective pattern recognition methods tailored to exploit basic forms of EMG signal synergies— Waveform Length Phasors (WLPHASOR), Root-Mean-Squared Phasor (RMSPHASOR), and the proposed novel Multi-Signal Waveform Length (MSWL). Tests are conducted on EMG data from 22 participants performing 11 hand and wrist movements using two EMG armbands (10 and 8 channels, respectively), utilizing the open-source LibEMG toolbox. Preliminary findings suggest that, while DL algorithms exhibit formidable capabilities, the performance gap with traditional EMG feature extraction methods may not be as substantial as anticipated. The observations of this study revealed no significant differences in average accuracies between ROCKET, WLPHASOR, and RMSPHASOR (87% average across participants). Furthermore, MSWL significantly enhances performance to 90%, and the combination of ROCKET+MSWL achieves 91% on average across all subjects. These findings challenge the narrative of DL dominance in EMG pattern recognition, urging a re-evaluation of the algorithmic focus and contributing valuable insights to the debate on effective approaches for extracting meaningful information from EMG signals.

KeywordsElectromyography (EMG); Myoelectric control; ROCKET; Deep Learning
Year2024
ConferenceIEEE EMBC 2024
PublisherIEEE
ISSNhttps://embc.embs.org/2024/
Digital Object Identifier (DOI)https://doi.org/10.1109/EMBC53108.2024.10782511
Web address (URL)https://embc.embs.org/2024/
Accepted author manuscript
License
File Access Level
Open
Output statusPublished
Publication dates
Online17 Dec 2024
Publication process dates
AcceptedJul 2024
Deposited06 Mar 2025
Permalink -

https://repository.derby.ac.uk/item/q7475/modern-myoelectric-control-is-it-time-to-change-the-algorithmic-focus

Download files


Accepted author manuscript
EMBC2024_Paper_Accepted_Rami.pdf
License: CC BY 4.0
File access level: Open

  • 9
    total views
  • 4
    total downloads
  • 6
    views this month
  • 2
    downloads this month

Export as

Related outputs

Predictive modelling of peroxisome proliferator-activated receptor gamma (pparγ) ic50 inhibition by emerging pollutants using light gradient boosting machine
Awomutia, A., Yu, Z., Adesina, O., Samuel, O., Mumbi, A. W. and Yin, D. 2025. Predictive modelling of peroxisome proliferator-activated receptor gamma (pparγ) ic50 inhibition by emerging pollutants using light gradient boosting machine. SAR and QSAR in Environmental Research . https://doi.org/10.1080/1062936X.2025.2478123
A Novel Hybrid Approach-based on Heartbeat and Accelerometer Signals for Enhanced Security in WBSNs
Yan, G., Zhang, G., Liu, F., Samuel, O., Aborokbah, M., Guo, J., Zhu, L. and Wei, S. 2025. A Novel Hybrid Approach-based on Heartbeat and Accelerometer Signals for Enhanced Security in WBSNs. IEEE Sensors Journal. 25 (6), pp. 1-14. https://doi.org/10.1109/JSEN.2025.3531786
A novel sEMG-FMG combined sensor fusion approach based on an attention-driven cnn for dynamic hand gesture recognitionnition
Oyemakinde, T. T., Kulwa, F., Peng, X., Liu, Y., Cao, J., Deng, X., Wang, M., Li, G., Samuel, O., Fang, P. and Li, X. 2025. A novel sEMG-FMG combined sensor fusion approach based on an attention-driven cnn for dynamic hand gesture recognitionnition. IEEE Transactions on Instrumentation and Measurement.
On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †
Samuel, O. 2024. On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †. Engineering Proceedings. 58 (1). https://doi.org/10.3390/ecsa-10-16231
Bio-Magneto Sensing and Unsupervised Deep Multiresolution Analysis for Labor Predictions in Term and Preterm Pregnancies †
Samuel, O. 2024. Bio-Magneto Sensing and Unsupervised Deep Multiresolution Analysis for Labor Predictions in Term and Preterm Pregnancies †. Engineering Proceedings. 58 (1). https://doi.org/10.3390/ecsa-10-16245
Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries
Karmani, P., Chandio, A. A., Korejo, I. A., Samuel, O. and Aborokbah, M. 2024. Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries. Peer J Computer Science . pp. 1-20. https://doi.org/10.7717/peerj-cs.2397
Robust Epileptic Seizure Detection Based on Biomedical Signals Using an Advanced Multi-View Deep Feature Learning Approach
Ahmad, I., Liu, Z., Li, L., Ullah, I., Wang, X., Samuel, O., Li, G., Tao, Y., Chen, Y. and Chen, S. 2024. Robust Epileptic Seizure Detection Based on Biomedical Signals Using an Advanced Multi-View Deep Feature Learning Approach. IEEE Journal of Biomedical and Health Informatics. pp. 1-13. https://doi.org/10.1109/JBHI.2024.3396130
A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization
Samuel, O., Asogbon, M. and McEwan, A. 2024. A robust feature adaptation approach against variation of muscle contraction forces for myoelectric pattern recognition-based gesture characterization. Biomedical Signal Processing and Control. 95 (2024), p. 106446. https://doi.org/https://doi.org/10.1016/j.bspc.2024.106446
Adaptive Stepwise Feature Selection Approach for EEG-Based Epileptic Seizure Classification
Aboyeji, S. T., Zhou, W., Tao, Y., Zhu, M., Samuel, O. and Ahmad, I. 2024. Adaptive Stepwise Feature Selection Approach for EEG-Based Epileptic Seizure Classification. IEEE EMBC 2024. Orlando, Florida, United States of America Jul - Aug 2024 IEEE. https://doi.org/https://doi.org/10.1109/EMBC53108.2024.10782357
Exploring EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis
Igbe, T., Kandwal, A., Li, J., Kulwa, F., Samuel, O. and Nie, Z. 2024. Exploring EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis. IEEE Transactions on Instrumentation and Measurements. 73, pp. 1-8. https://doi.org/10.1109/TIM.2024.3400333
An Efficient Deep Transfer Learning Network for Characterization of Stroke Patients’ Motor Execution from Multi-Channel EEG-Recordings
Samuel, O., Asogbon, M., Kulwa, F., McEwan, A., Aboyeji, S. T. and Khushaba, R. 2024. An Efficient Deep Transfer Learning Network for Characterization of Stroke Patients’ Motor Execution from Multi-Channel EEG-Recordings. IEEE EMBC 2024. Orlando, Florida, United States of America Jul - Aug 2024 IEEE. https://doi.org/10.1109/EMBC53108.2024.10782368
A Pilot on the use of Stride Cadence for the Charac-terization of Walking Ability in Lower Limb Ampu-tees
Nsugbe, E., Samuel, O., Asogbon, M. and Jose, J. R. L. 2024. A Pilot on the use of Stride Cadence for the Charac-terization of Walking Ability in Lower Limb Ampu-tees. Biomedical Engineering Advances. 7 (2024), pp. 1-10. https://doi.org/10.1016/j.bea.2024.100117
Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization
Asogbon, M.G., Samuel, O., Meziane, F., Li, G. and Li, Y. 2024. Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization. 17th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSIGNALS. SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0012373400003657
Continuous Kalman Estimation Method for Finger Kinematics Tracking from Surface Electromyography
Zhang, H., Peng, B., Tian, L., Samuel, O. and Li, G. 2024. Continuous Kalman Estimation Method for Finger Kinematics Tracking from Surface Electromyography. Cyborg and Bionic Systems. pp. 1-11. https://doi.org/10.34133/cbsystems.0094
An Efficient Feature Selection and Explainable Classification Method for EEG-based Epileptic Seizure Detection
Ahmad, I., Yao, C., Li, L., Chen, Y., Liu, Z., Ullah, I., Shabaz, M., Wang, X., Huang, K., Li, G., Zhao, G., Samuel, O. and Chen, S. 2023. An Efficient Feature Selection and Explainable Classification Method for EEG-based Epileptic Seizure Detection. Journal of Information Security and Applications. 80, pp. 1-17. https://doi.org/10.1016/j.jisa.2023.103654
Towards Adequate Policy Enhancement: An AI-Driven Decision Tree Model for Efficient Recognition and Classification of EPA Status via Multi-Emission Parameters
Awomuti, A., Alimo, P., Young, G., Agyeman, S., Akintunde, T., Agbeja, A., Oderinde, O., Samuel, O. and Otobrise, H. 2023. Towards Adequate Policy Enhancement: An AI-Driven Decision Tree Model for Efficient Recognition and Classification of EPA Status via Multi-Emission Parameters. City and Environment Interactions. 20, pp. 1-12. https://doi.org/10.1016/j.cacint.2023.100127
A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition
Kulwa, F., Zhang, H., Samuel, O., Asogbon, M., Scheme, E., Kushaba, R., McEwan, A. and Li, G. 2023. A Multi-Dataset Characterization of Window-based Hyperparameters for Deep CNN-driven sEMG Pattern Recognition. IEEE Transactions on Human-Machine Systems. pp. 1-12. https://doi.org/10.1109/THMS.2023.3329536
Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor
Asogbon, M., Huai, Y., Samuel, O., Jing, Z., Ma, Y., Liu, J., Jiang, Y., Fu, Y., Li, G. and Li, Y. 2023. Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE Xplore. https://doi.org/https://doi.org/10.1109/EMBC40787.2023.10340688
An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals
Zangene, A., Samuel, O., Abbasi, A., Nazarpour, K., McEwan, A. and Li, G. 2023. An Attention-based Bidirectional LSTM Model for Continuous Cross-subject Estimation of Knee Joint Angle during Running from sEMG Signals. 45th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340791
Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors
Samuel, O., Asogbon, M., Kulwa, F., Zangene, A., Oyemakinde, T., Igbe, T., McEwan, A., Li, Y. and Li, G. 2023. Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for Precise Decoding of Motor Intent in Stroke Survivors. 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/EMBC40787.2023.10340683
Inspection of EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis
Igbe, T., Samuel, O.W., Li, J., Kulwa, F., Kandwal, A. and Nie, Z. 2023. Inspection of EEG Signals for Noninvasive Blood Glucose Monitoring in Prediabetes Diagnosis. IEEE International Workshop on Medical Measurement and Applications (MEMEA). IEEE. https://doi.org/10.1109/MeMeA57477.2023.10171941
A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems
Kulwa, F., Samuel, O.W., Asogbon, M., Oyemakinde, T.T., Obe, O.O. and Li, G. 2023. A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems. 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE. https://doi.org/10.1109/MeMeA57477.2023.10171910
An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running
Zangene, A. R., Samuel, O., Abbasi, A., McEwan, A., Asogbon, M. G., Li, G. and Nazarpour, K. 2023. An efficient attention-driven deep neural network approach for continuous estimation of knee joint kinematics via sEMG signals during running. Biomedical Signal Processing and Control. 86 (B), pp. 1-12. https://doi.org/10.1016/j.bspc.2023.105103
A Hybrid Strategy-based Ultra-narrow Stretchable Microelectrodes with Cell-level Resolution
Li, F., Han, F., Wang, L., Huang, L., Samuel, O.W., Zhao, H., Xie, R., Wang, P., Tian, Q., Li, Q., Zhao, Y., Yu, Mei, Sun, J., Yang, R., Zhou, X., Li, F., Li, G., Lu, Y., Guo, P. and Liu, Z. 2023. A Hybrid Strategy-based Ultra-narrow Stretchable Microelectrodes with Cell-level Resolution. Advanced Functional Materials. 2300859, pp. 1-9. https://doi.org/10.1002/adfm.202300859
On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines
Nsugbe, E., Reyes-Lagos, J.J., Adams, D. and Samuel, O. 2023. On the prediction of premature births in Hispanic labour patients using uterine contractions, heart beat signals and prediction machines. Healthcare Technology Letters. 10 (1-2), pp. 11-22. https://doi.org/10.1049/htl2.12044
Surface Electromyogram, Kinematic, and Kinetic Dataset of Lower Limb Walking for Movement Intent Recognition
Wei, W., Tan, F., Zhang, H., Mao, H., Fu, M., Samuel, O.W. and Li, G. 2023. Surface Electromyogram, Kinematic, and Kinetic Dataset of Lower Limb Walking for Movement Intent Recognition. Nature Scientific Data. 10 (358), pp. 1-16. https://doi.org/10.1038/s41597-023-02263-3
A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals
Ahmad, I., Wang, X., Javeed, D., Kumar, P., Samuel, O.W. and Chen, S. 2023. A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2023.3265983