Seasonal differences in soil CO2 efflux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin, Botswana

Journal article


Thomas, Andrew D., Dougill, Andrew J., Elliott, D. and Mairs, Helen 2014. Seasonal differences in soil CO2 efflux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin, Botswana. Geoderma. 219-220. https://doi.org/10.1016/j.geoderma.2013.12.028
AuthorsThomas, Andrew D., Dougill, Andrew J., Elliott, D. and Mairs, Helen
Abstract

The carbon cycle in salt pans is complex and poorly understood. Field-based data are needed to improve regional estimates of C storage and land–atmosphere CO2 fluxes from dryland environments where pans are prevalent. This paper provides a first estimate of C stores and CO2 efflux within the salt pan, grassland and woodland of Ntwetwe Pan in the Makgadikgadi Basin, Botswana. C fluxes and stores associated with cyanobacteria-salt crusts are also determined. Total C stores are approximately an order of magnitude greater than on neighbouring Kalahari Sands at 675 ± 41, 760 ± 94 and 274 ± 15 tons ha− 1 to 1 m depth in the woodland, grassland and salt pan respectively. Most of the C is found as carbonate, with organic C comprising 4.6–10% of total C. CO2 efflux increased with temperature and also increased for a few hours after flooding of the pan surface. Crusts were a small net contributor to CO2 efflux in the dry season but could be a net CO2 sink in the wet season. The biogeochemistry of the sediment is likely to facilitate rapid conversion of organic C from aquatic organisms, biological crusts and algal mats into inorganic carbonates. Although further work is required to improve estimates of the spatial and temporal distribution of C, our data have demonstrated the substantial C store with the Makgadikgadi environment and the important role of biological crusts in the C cycle.

Keywordscarbon cycle ; land–atmosphere CO2 fluxes; inorganic carbonates
Year2014
JournalGeoderma
Journal citation219-220
PublisherElsevier
ISSN0016-7061
Digital Object Identifier (DOI)https://doi.org/10.1016/j.geoderma.2013.12.028
Web address (URL)https://eprints.whiterose.ac.uk/80288/
https://www.sciencedirect.com/science/article/abs/pii/S001670611400007X?via%3Dihub
Output statusPublished
Publication dates24 Jan 2014
Publication process dates
Accepted30 Dec 2013
Deposited24 Feb 2023
Permalink -

https://repository.derby.ac.uk/item/9x579/seasonal-differences-in-soil-co2-efflux-and-carbon-storage-in-ntwetwe-pan-makgadikgadi-basin-botswana

  • 12
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Bio-protection of cementitious materials below ground: The significance of natural soil environments
Hamza, O., Esaker, M., Abogdera, A. and Elliott, D. 2024. Bio-protection of cementitious materials below ground: The significance of natural soil environments. Developments in the Built Environment. 17, pp. 1-12. https://doi.org/10.1016/j.dibe.2024.100331
Bio-self-healing of cementitious mortar incubated within clay soil
Esaker, M., Hamza, O. and Elliott, D. 2023. Bio-self-healing of cementitious mortar incubated within clay soil. Journal of Materials in Civil Engineering. 36 (1). https://doi.org/10.1061/JMCEE7.MTENG-15713
Monitoring the bio-self-healing performance of cement mortar incubated within soil and water using electrical resistivity
Esaker, M., Hamza, O. and Elliott, D. 2023. Monitoring the bio-self-healing performance of cement mortar incubated within soil and water using electrical resistivity . Construction and Building Materials. 393, pp. 1-11. https://doi.org//10.1016/j.conbuildmat.2023.132109
Aspects of microbial communities in peatland carbon cycling under changing climate and land use pressures
Clare H. Robinson, Jonathan P. Ritson, Danielle M. Alderson, Ashish A. Malik, Robert I. Griffiths, Andreas Heinemeyer, Angela V. Gallego-Sala, Anne Quillet, Bjorn J.M. Robroek, Chris Evans, Dave M. Chandler, David R. Elliott, Emma L. Shutttleworth, Erik A. Lilleskov, Ezra Kitson, Filipa Cox, Fred Worrall, Gareth D. Clay, Ian Crosher, Jennifer Pratscher, Jon Bird, Jonathan Walker, Lisa R. Belyea, Marc G. Dumont, Nichole G.A. Bell, Rebekka R.E. Artz, Richard D. Bardgett, Roxane Andersen, Simon M. Hutchinson, Susan E. Page, Tim J. Thom, William Burn, Martin G. Evans and Elliott, D. 2023. Aspects of microbial communities in peatland carbon cycling under changing climate and land use pressures. Mires and Peat. 29, pp. 1-36. https://doi.org/10.19189/map.2022.omb.sta.2404
Microbial communities and biogeochemical functioning across peatlands in the Athabasca Oil Sands region of Canada: Implications for reclamation and management
Shaun M Allingham, Felix C Nwaishi, Roxane Andersen, Louis J Lamit and Elliott, D. 2022. Microbial communities and biogeochemical functioning across peatlands in the Athabasca Oil Sands region of Canada: Implications for reclamation and management. Land Degradation & Development. pp. 1-18. https://doi.org/10.1002/ldr.4549
Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning – A research agenda
Elliott, D. 2021. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning – A research agenda. Science of The Total Environment. 759, pp. 1-9. https://doi.org/10.1016/j.scitotenv.2020.143467
Soil biocrusts affect metabolic response to hydration on dunes in west Queensland, Australia
Thomas, Andrew D., Elliott, D., Hardcastle, David, Strong, Craig L., Bullard, Joanna, Webster, Richard and Lan, Shubin 2021. Soil biocrusts affect metabolic response to hydration on dunes in west Queensland, Australia. Geoderma. 405, pp. 1-10. https://doi.org/10.1016/j.geoderma.2021.115464
Detecting macroecological patterns in bacterial communities across independent studies of global soils.
Ramirez, Kelly S., Knight, Christopher G., de Hollander, Mattias, Brearley, Francis Q., Constantinides, Bede, Cotton, Anne, Creer, Si, Crowther, Thomas W., Davison, John, Delgado-Baquerizo, Manuel, Dorrepaal, Ellen, Elliott, D., Fox, Graeme, Griffiths, Robert I., Hale, Chris, Hartman, Kyle, Houlden, Ashley, Jones, David L., Krab, Eveline J., Maestre, Fernando T., McGuire, Krista L., Monteux, Sylvain, Orr, Caroline H., van der Putten, Wim H., Roberts, Ian S., Robinson, David A., Rocca, Jennifer D., Rowntree, Jennifer, Schlaeppi, Klaus, Shepherd, Matthew, Singh, Brajesh K., Straathof, Angela L., Bhatnagar, Jennifer M., Thion, Cécile, van der Heijden, Marcel G. A. and de Vries, Franciska T. 2017. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology. 3, p. 189–196. https://doi.org/10.1038/s41564-017-0062-x
Pastoralism and Kalahari Rangeland Soils
Thomas, A.D., Elliott, D., Griffith, T.N.L. and Mairs, H. 2015. Pastoralism and Kalahari Rangeland Soils. in: Brearley, F. Q. and Thomas, A. D. (ed.) Land-Use Change Impacts On Soil Processes: Tropical And Savannah Ecosystems Wallingford CABI. pp. 122-132