Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen

Journal article


Toubes‐Rodrigo, Mario, Potgieter‐Vermaak, Sanja, Sen, Robin, Oddsdóttir, Edda S., Elliott, D. and Cook, Simon 2021. Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen. MicrobiologyOpen. 10 (4), pp. 1-13. https://doi.org/10.1002/mbo3.1200
AuthorsToubes‐Rodrigo, Mario, Potgieter‐Vermaak, Sanja, Sen, Robin, Oddsdóttir, Edda S., Elliott, D. and Cook, Simon
Abstract

The basal zone of glaciers is characterized by physicochemical properties that are distinct from firnified ice due to strong interactions with underlying substrate and bedrock. Basal ice (BI) ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil formation remain poorly described. We report on basal ice geochemistry, bacterial diversity (16S rRNA gene phylogeny), and inferred ecological roles at three temperate Icelandic glaciers. We sampled three physically distinct basal ice facies (stratified, dispersed, and debris bands) and found facies dependent on biological similarities and differences; basal ice character is therefore an important sampling consideration in future studies. Based on a high abundance of silicates and Fe-containing minerals and, compared to earlier BI literature, total C was detected that could sustain the basal ice ecosystem. It was hypothesized that C-fixing chemolithotrophic bacteria, especially Fe-oxidisers and hydrogenotrophs, mutualistically support associated heterotrophic communities. Basal ice-derived rRNA gene sequences corresponding to genera known to harbor hydrogenotrophic methanogens suggest that silicate comminution-derived hydrogen can also be utilized for methanogenesis. PICRUSt-predicted metabolism suggests that methane metabolism and C-fixation pathways could be highly relevant in BI, indicating the importance of these metabolic routes. The nutrients and microbial communities release from melting basal ice may play an important role in promoting pioneering communities establishment and soil development in deglaciating forelands.

KeywordsMicrobiology; cryosphere; environmental microbiology; extremophiles; glaciers; microbial ecology
Year2021
JournalMicrobiologyOpen
Journal citation10 (4), pp. 1-13
PublisherWiley
ISSN2045-8827
Digital Object Identifier (DOI)https://doi.org/10.1002/mbo3.1200
Web address (URL)https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1200
hdl:10545/626022
Output statusPublished
Publication dates19 Jul 2021
Publication process dates
Deposited01 Oct 2021, 15:36
Accepted11 May 2021
Rights

Attribution 4.0 International

ContributorsThe Open University, Milton Keynes, UK, Manchester Metropolitan University, Manchester, UK, Icelandic Forest Research, Reykjavik, Iceland, University of Derby and University of Dundee
File
File Access Level
Restricted
File
File Access Level
Restricted
File
License
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/92wv4/active-microbial-ecosystem-in-glacier-basal-ice-fuelled-by-iron-and-silicate-comminution-derived-hydrogen

Download files

  • 13
    total views
  • 7
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Editorial: Biological soil crusts: spatio-temporal development and ecological functions of soil surface microbial communities across different scales
Lan, S., Elliott, D., Chamizo, S., Felde, V. J. and Thomas, A.D. 2024. Editorial: Biological soil crusts: spatio-temporal development and ecological functions of soil surface microbial communities across different scales. Frontiers in Microbiology. 15, pp. 1-6. https://doi.org/10.3389/fmicb.2024.1447058
Changes in nitrogen functional genes and microbial populations in soil profiles of a peatland under different burning regimes
Allingham, S., Drake, S., Ramsey, A., Field, C.D., Nwaishi, F.C. and Elliott, D. 2024. Changes in nitrogen functional genes and microbial populations in soil profiles of a peatland under different burning regimes. Applied Soil Ecology. 200, pp. 1-13. https://doi.org/10.1016/j.apsoil.2024.105426
Spatial organisation of fungi in soil biocrusts of the Kalahari is related to bacterial community structure and may indicate ecological functions of fungi in drylands
Elliott, D., Thomas, A. D., Hoon, S. R. and Sen, R. S. 2024. Spatial organisation of fungi in soil biocrusts of the Kalahari is related to bacterial community structure and may indicate ecological functions of fungi in drylands. Frontiers in Microbiology. 15, pp. 1-11. https://doi.org/10.3389/fmicb.2024.1173637
Bio-protection of cementitious materials below ground: The significance of natural soil environments
Hamza, O., Esaker, M., Abogdera, A. and Elliott, D. 2024. Bio-protection of cementitious materials below ground: The significance of natural soil environments. Developments in the Built Environment. 17, pp. 1-12. https://doi.org/10.1016/j.dibe.2024.100331
Bio-self-healing of cementitious mortar incubated within clay soil
Esaker, M., Hamza, O. and Elliott, D. 2023. Bio-self-healing of cementitious mortar incubated within clay soil. Journal of Materials in Civil Engineering. 36 (1). https://doi.org/10.1061/JMCEE7.MTENG-15713
Monitoring the bio-self-healing performance of cement mortar incubated within soil and water using electrical resistivity
Esaker, M., Hamza, O. and Elliott, D. 2023. Monitoring the bio-self-healing performance of cement mortar incubated within soil and water using electrical resistivity . Construction and Building Materials. 393, pp. 1-11. https://doi.org//10.1016/j.conbuildmat.2023.132109
Aspects of microbial communities in peatland carbon cycling under changing climate and land use pressures
Clare H. Robinson, Jonathan P. Ritson, Danielle M. Alderson, Ashish A. Malik, Robert I. Griffiths, Andreas Heinemeyer, Angela V. Gallego-Sala, Anne Quillet, Bjorn J.M. Robroek, Chris Evans, Dave M. Chandler, David R. Elliott, Emma L. Shutttleworth, Erik A. Lilleskov, Ezra Kitson, Filipa Cox, Fred Worrall, Gareth D. Clay, Ian Crosher, Jennifer Pratscher, Jon Bird, Jonathan Walker, Lisa R. Belyea, Marc G. Dumont, Nichole G.A. Bell, Rebekka R.E. Artz, Richard D. Bardgett, Roxane Andersen, Simon M. Hutchinson, Susan E. Page, Tim J. Thom, William Burn, Martin G. Evans and Elliott, D. 2023. Aspects of microbial communities in peatland carbon cycling under changing climate and land use pressures. Mires and Peat. 29, pp. 1-36. https://doi.org/10.19189/map.2022.omb.sta.2404
Microbial communities and biogeochemical functioning across peatlands in the Athabasca Oil Sands region of Canada: Implications for reclamation and management
Shaun M Allingham, Felix C Nwaishi, Roxane Andersen, Louis J Lamit and Elliott, D. 2022. Microbial communities and biogeochemical functioning across peatlands in the Athabasca Oil Sands region of Canada: Implications for reclamation and management. Land Degradation & Development. pp. 1-18. https://doi.org/10.1002/ldr.4549
Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning – A research agenda
Ritson, J.P., Elliott, D., Alderson, D.M., Robinson, C.H, Burkitt, A.E., Heinemeyer, A., Stimson, A.G., Gallego-Sala, A., Harris, A., Quillet, A., Malik, A.A. and Cole, B. 2021. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning – A research agenda. Science of The Total Environment. 759, pp. 1-9. https://doi.org/10.1016/j.scitotenv.2020.143467
Self-healing of bio-cementitious mortar incubated within neutral and acidic soil
Esaker, Mohamed, Hamza, Omar, Souid, Adam and Elliott, D. 2021. Self-healing of bio-cementitious mortar incubated within neutral and acidic soil. Materials and Structures. 54 (2), pp. 1-16. https://doi.org/10.1617/s11527-021-01690-1
Soil biocrusts affect metabolic response to hydration on dunes in west Queensland, Australia
Thomas, Andrew D., Elliott, D., Hardcastle, David, Strong, Craig L., Bullard, Joanna, Webster, Richard and Lan, Shubin 2021. Soil biocrusts affect metabolic response to hydration on dunes in west Queensland, Australia. Geoderma. 405, pp. 1-10. https://doi.org/10.1016/j.geoderma.2021.115464
Methane production and oxidation potentials along a fen‐bog gradient from southern boreal to subarctic peatlands in Finland
Zhang, Hui, Tuittila, Eeva‐Stiina, Korrensalo, Aino, Laine, Anna M., Uljas, Salli, Welti, Nina, Kerttula, Johanna, Maljanen, Marja, Elliott, D., Vesala, Timo and Lohila, Annalea 2021. Methane production and oxidation potentials along a fen‐bog gradient from southern boreal to subarctic peatlands in Finland. Global Change Biology. 27, p. 4449–4464. https://doi.org/10.1111/gcb.15740
The effect of soil incubation on bio self-healing of cementitious mortar
Hamza, Omar, Esaker, Mohamed, Elliott, D. and Souid, A. 2020. The effect of soil incubation on bio self-healing of cementitious mortar. Materials Today Communications. 24, pp. 1-9. https://doi.org/10.1016/j.mtcomm.2020.100988
Effects of vegetation on bacterial communities, carbon and nitrogen in dryland soil surfaces: implications for shrub encroachment in the southwest Kalahari
Thomas, Andrew D., Tooth, Stephen, Wu, Li and Elliott, D. 2020. Effects of vegetation on bacterial communities, carbon and nitrogen in dryland soil surfaces: implications for shrub encroachment in the southwest Kalahari. Science of The Total Environment. 764, pp. 1-11. https://doi.org/10.1016/j.scitotenv.2020.142847
Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease
Sweet, Michael, Burian, Alfred, Fifer, James, Bulling, Mark, Elliott, D. and Raymundo, Laurie 2019. Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease. Microbiome. 7 (1), pp. 1-14. https://doi.org/10.1186/s40168-019-0759-6
Surface stability in drylands is influenced by dispersal strategy of soil bacteria
Elliott, D., Thomas, Andrew D., Strong, Craig L. and Bullard, Joanna 2019. Surface stability in drylands is influenced by dispersal strategy of soil bacteria. Journal of Geophysical Research: Biogeosciences. pp. 1-16. https://doi.org/10.1029/2018jg004932
Experimental data of bio self-healing concrete incubated in saturated natural soil
Souid, A., Esaker, M., Elliott, D. and Hamza, Omar 2019. Experimental data of bio self-healing concrete incubated in saturated natural soil. Data in Brief. 26, pp. 1-11. https://doi.org/10.1016/j.dib.2019.104394
The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux: Potential implications of shrub encroachment for Kalahari rangelands.
Thomas, Andrew David, Elliott, D., Dougill, Andrew John, Stringer, Lindsay Carman, Hoon, Stephen Robert and Sen, Robin 2018. The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degradation & Development. 29 (5), pp. 1-11. https://doi.org/10.1002/ldr.2918
Symbiotic microbes from marine invertebrates: Driving a new era of natural product drug discovery.
Blockley, Alix, Elliott, D., Roberts, Adam and Sweet, Michael J. 2017. Symbiotic microbes from marine invertebrates: Driving a new era of natural product drug discovery. Diversity. 9 (4), pp. 1-13. https://doi.org/10.3390/d9040049
Detecting macroecological patterns in bacterial communities across independent studies of global soils.
Ramirez, Kelly S., Knight, Christopher G., de Hollander, Mattias, Brearley, Francis Q., Constantinides, Bede, Cotton, Anne, Creer, Si, Crowther, Thomas W., Davison, John, Delgado-Baquerizo, Manuel, Dorrepaal, Ellen, Elliott, D., Fox, Graeme, Griffiths, Robert I., Hale, Chris, Hartman, Kyle, Houlden, Ashley, Jones, David L., Krab, Eveline J., Maestre, Fernando T., McGuire, Krista L., Monteux, Sylvain, Orr, Caroline H., van der Putten, Wim H., Roberts, Ian S., Robinson, David A., Rocca, Jennifer D., Rowntree, Jennifer, Schlaeppi, Klaus, Shepherd, Matthew, Singh, Brajesh K., Straathof, Angela L., Bhatnagar, Jennifer M., Thion, Cécile, van der Heijden, Marcel G. A. and de Vries, Franciska T. 2017. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology. 3, p. 189–196. https://doi.org/10.1038/s41564-017-0062-x
Sampling and Describing Glacier Ice
Toubes-Rodrigo, Mario, Cook, Simon J., Elliott, D. and Sen, Robin 2016. Sampling and Describing Glacier Ice. in: British Society for Geomorphology.
Arbuscular mycorrhizal community structure on co-existing tropical legume trees in French Guiana
Brearley, Francis Q., Elliott, D., Iribar, Amaia and Sen, Robin 2016. Arbuscular mycorrhizal community structure on co-existing tropical legume trees in French Guiana. Plant and Soil. 403, p. 253–265. https://doi.org/10.1007/s11104-016-2818-0
Pastoralism and Kalahari Rangeland Soils
Thomas, A.D., Elliott, D., Griffith, T.N.L. and Mairs, H. 2015. Pastoralism and Kalahari Rangeland Soils. in: Brearley, F. Q. and Thomas, A. D. (ed.) Land-Use Change Impacts On Soil Processes: Tropical And Savannah Ecosystems Wallingford CABI. pp. 122-132
Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation
Elliott, D., Caporn, S., Nwaishi, F., Nilsson, R. H. and Sen, R. 2015. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation. PLos ONE. 10 (5), pp. 1-20. https://doi.org/10.1371/journal.pone.0124726
Seasonal differences in soil CO2 efflux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin, Botswana
Thomas, Andrew D., Dougill, Andrew J., Elliott, D. and Mairs, Helen 2014. Seasonal differences in soil CO2 efflux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin, Botswana. Geoderma. 219-220. https://doi.org/10.1016/j.geoderma.2013.12.028
Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari
Elliott, D., Thomas, Andrew David, Hoon, Steve R. and Sen, Robin 2014. Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodiversity and conservation. 23, p. 1709–1733. https://doi.org/10.1007/s10531-014-0684-8
Diversity of Planktonic and Attached Bacterial Communities in a Phenol-Contaminated Sandstone Aquifer
Rizoulis, Athanasios, Elliott, D., Rolfe, Stephen. A, Thornton, Steven. F, Banwart, Steven. A, Pickup, Roger. W and Scholes, Julie. D 2013. Diversity of Planktonic and Attached Bacterial Communities in a Phenol-Contaminated Sandstone Aquifer. Microbial Ecology. 66, p. 84–95. https://doi.org/10.1007/s00248-013-0233-0