Dual Role of CREB in The Regulation of VSMC Proliferation: Mode of Activation Determines Pro- or Anti-Mitogenic Function.

Journal article


Duggirala, A. 2018. Dual Role of CREB in The Regulation of VSMC Proliferation: Mode of Activation Determines Pro- or Anti-Mitogenic Function. Scientific Reports. Vol 8 (Issue 1, Article: 4904). https://doi.org/10.1038/s41598-018-23199-4
AuthorsDuggirala, A.
Abstract

Vascular smooth muscle cell (VSMC) proliferation has been implicated in the development of restenosis after angioplasty, vein graft intimal thickening and atherogenesis. We investigated the mechanisms underlying positive and negative regulation of VSMC proliferation by the transcription factor cyclic AMP response element binding protein (CREB). Incubation with the cAMP elevating stimuli, adenosine, prostacyclin mimetics or low levels of forksolin activated CREB without changing CREB phosphorylation on serine-133 but induced nuclear translocation of the CREB co-factors CRTC-2 and CRTC-3. Overexpression of CRTC-2 or -3 significantly increased CREB activity and inhibited VSMC proliferation, whereas CRTC-2/3 silencing inhibited CREB activity and reversed the anti-mitogenic effects of adenosine A2B receptor agonists. By contrast, stimulation with serum or PDGFBB significantly increased CREB activity, dependent on increased CREB phosphorylation at serine-133 but not on CRTC-2/3 activation. CREB silencing significantly inhibited basal and PDGF induced proliferation. These data demonstrate that cAMP activation of CREB, which is CRTC2/3 dependent and serine-133 independent, is anti-mitogenic. Growth factor activation of CREB, which is serine-133-dependent and CRTC2/3 independent, is pro-mitogenic. Hence, CREB plays a dual role in the regulation of VSMC proliferation with the mode of activation determining its pro- or anti-mitogenic function.

KeywordsCREB; VSMC; cAMP; pro-mitogenic
Year2018
JournalScientific Reports
Journal citationVol 8 (Issue 1, Article: 4904)
PublisherNature
ISSN2045-2322
Digital Object Identifier (DOI)https://doi.org/10.1038/s41598-018-23199-4
Web address (URL)https://europepmc.org/articles/PMC5861041
https://www.scopus.com/record/display.uri?eid=2-s2.0-85044305023&origin=resultslist&sort=plf-f&src=s&st1=Dual+Role+of+CREB+in+The+Regulation+of+VSMC+Proliferation%3a+Mode+of+Activation+Determines+Pro-+or+Anti-Mitogenic+Function&sid=ccf4ba995966f3d84c56f8d2e70a2662&sot=b&sdt=b&sl=135&s=TITLE-ABS-KEY%28Dual+Role+of+CREB+in+The+Regulation+of+VSMC+Proliferation%3a+Mode+of+Activation+Determines+Pro-+or+Anti-Mitogenic+Function%29&relpos=0&citeCnt=16&searchTerm=#abstract
https://pubmed.ncbi.nlm.nih.gov/29559698/
Output statusPublished
Publication dates
Online20 Mar 2018
01 Dec 2018
Publication process dates
Accepted06 Mar 2018
Deposited08 Jun 2023
Permalink -

https://repository.derby.ac.uk/item/9z267/dual-role-of-creb-in-the-regulation-of-vsmc-proliferation-mode-of-activation-determines-pro-or-anti-mitogenic-function

  • 18
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Systematic identification of genetic influences on methylation across the human life course.
Tom R. Gaunt, Hashem A. Shihab, Gibran Hemani,, Josine L. Min, Geoff Woodward, Oliver Lyttleton, Jie Zheng, Duggirala, A., Wendy L. McArdle, Karen Ho, Susan M. Ring, David M. Evans, George Davey Smith and Caroline L. Relton 2018. Systematic identification of genetic influences on methylation across the human life course. Genome biology. Vol 17 (2016, Article: 61). https://doi.org/10.1186/s13059-016-0926-z
The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.
Tomomi E. Kimura, Duggirala, A., Madeleine C. Smith, Stephen White, Graciela B. Sala-Newby, Andrew C. Newby and Mark Bond 2015. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. Journal of molecular and cellular cardiology. Vol 90 (January 2016), pp. 1-10. https://doi.org/10.1016/j.yjmcc.2015.11.024
Data Resource Profile: Accessible Resource for Integrated Epigenomic Studies (ARIES).
Relton CL, Gaunt T, McArdle W, Ho K, Duggirala, A., Shihab H, Woodward G, Lyttleton O, Evans DM, Reik W, Paul YL, Ficz G, Ozanne SE, Wipat A, Flanagan K, Lister A, Heijmans BT, Ring SM and Davey Smith G 2015. Data Resource Profile: Accessible Resource for Integrated Epigenomic Studies (ARIES). International journal of epidemiology. Vol 44 (Issue 4), pp. 1181-1190. https://doi.org/10.1093/ije/dyv072
Non coding RNAs in aortic aneurysmal disease.
Duggirala, A., Francesca Delogu, Timothy G Angelini, Tanya Smith, Massimo Caputo, Cha Rajakaruna and Costanza Emanueli 2015. Non coding RNAs in aortic aneurysmal disease. Frontiers in genetics. Vol 6 (Issue APR, Article: 125). https://doi.org/10.3389/fgene.2015.00125
cAMP-induced actin cytoskeleton remodelling inhibits MKL1-dependent expression of the chemotactic and pro-proliferative factor, CCN1.
Duggirala, A., Kimura TE, Sala-Newby GB, Johnson JL, Wu YJ, Newby AC and Bond M 2014. cAMP-induced actin cytoskeleton remodelling inhibits MKL1-dependent expression of the chemotactic and pro-proliferative factor, CCN1. Journal of molecular and cellular cardiology. Vol 79 (Feb 2015), pp. 157 - 168. https://doi.org/10.1016/j.yjmcc.2014.11.012
Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells.
Tomomi E. Kimura, Duggirala, A., Charles C.T. Hindmarch, Richard C. Hewer, Mei-Zhen Cui, Andrew C. Newby and Mark Bond 2014. Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells. Journal of molecular and cellular cardiology. Vol 72 (July 2014), pp. 9 - 19. https://doi.org/10.1016/j.yjmcc.2014.02.001
Differences in smoking associated DNA methylation patterns in South Asians and Europeans.
Hannah R Elliott, Tillin, Therese, McArdle, Wendy L., Ho, Karen, Duggirala, A., Frayling, Tim M., Smith, George Davey, Hughes, Alun D., Chaturvedi, Nish and Relton, Caroline L. 2014. Differences in smoking associated DNA methylation patterns in South Asians and Europeans. Clinical Epigenetics. Vol 6 (2014), p. 4. https://doi.org/10.1186/1868-7083-6-4