The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

Journal article


Tomomi E. Kimura, Duggirala, A., Madeleine C. Smith, Stephen White, Graciela B. Sala-Newby, Andrew C. Newby and Mark Bond 2015. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. Journal of molecular and cellular cardiology. Vol 90 (January 2016), pp. 1-10. https://doi.org/10.1016/j.yjmcc.2015.11.024
AuthorsTomomi E. Kimura, Duggirala, A., Madeleine C. Smith, Stephen White, Graciela B. Sala-Newby, Andrew C. Newby and Mark Bond
Abstract

AIMS:Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. METHODS AND RESULTS:Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. CONCLUSION:Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention.

Keywords3'-5'-Cyclic adenosine monophosphate; CAMP; TAZ; TEAD; VSMC; YAP
Year2015
JournalJournal of molecular and cellular cardiology
Journal citationVol 90 (January 2016), pp. 1-10
PublisherElseiver
ISSN1095-8584
0022-2828
Digital Object Identifier (DOI)https://doi.org/10.1016/j.yjmcc.2015.11.024
Web address (URL)https://europepmc.org/articles/PMC4727789
https://www.sciencedirect.com/science/article/pii/S0022282815301280?via%3Dihub
https://pubmed.ncbi.nlm.nih.gov/26625714/
https://www.scopus.com/record/display.uri?eid=2-s2.0-84949200386&origin=resultslist&sort=plf-f&src=s&st1=The+Hippo+pathway+mediates+inhibition+of+vascular+smooth+muscle+cell+proliferation+by+cAMP.&sid=b6ed8387eeebfd0d8fc6d3ac5b0f361b&sot=b&sdt=b&sl=106&s=TITLE-ABS-KEY%28The+Hippo+pathway+mediates+inhibition+of+vascular+smooth+muscle+cell+proliferation+by+cAMP.%29&relpos=0&citeCnt=61&searchTerm=
Output statusPublished
Publication dates
Online25 Nov 2015
Online01 Jan 2016
Publication process dates
Accepted20 Nov 2015
Deposited08 Jun 2023
Permalink -

https://repository.derby.ac.uk/item/9z26z/the-hippo-pathway-mediates-inhibition-of-vascular-smooth-muscle-cell-proliferation-by-camp

  • 14
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Systematic identification of genetic influences on methylation across the human life course.
Tom R. Gaunt, Hashem A. Shihab, Gibran Hemani,, Josine L. Min, Geoff Woodward, Oliver Lyttleton, Jie Zheng, Duggirala, A., Wendy L. McArdle, Karen Ho, Susan M. Ring, David M. Evans, George Davey Smith and Caroline L. Relton 2018. Systematic identification of genetic influences on methylation across the human life course. Genome biology. Vol 17 (2016, Article: 61). https://doi.org/10.1186/s13059-016-0926-z
Dual Role of CREB in The Regulation of VSMC Proliferation: Mode of Activation Determines Pro- or Anti-Mitogenic Function.
Duggirala, A. 2018. Dual Role of CREB in The Regulation of VSMC Proliferation: Mode of Activation Determines Pro- or Anti-Mitogenic Function. Scientific Reports. Vol 8 (Issue 1, Article: 4904). https://doi.org/10.1038/s41598-018-23199-4
Data Resource Profile: Accessible Resource for Integrated Epigenomic Studies (ARIES).
Relton CL, Gaunt T, McArdle W, Ho K, Duggirala, A., Shihab H, Woodward G, Lyttleton O, Evans DM, Reik W, Paul YL, Ficz G, Ozanne SE, Wipat A, Flanagan K, Lister A, Heijmans BT, Ring SM and Davey Smith G 2015. Data Resource Profile: Accessible Resource for Integrated Epigenomic Studies (ARIES). International journal of epidemiology. Vol 44 (Issue 4), pp. 1181-1190. https://doi.org/10.1093/ije/dyv072
Non coding RNAs in aortic aneurysmal disease.
Duggirala, A., Francesca Delogu, Timothy G Angelini, Tanya Smith, Massimo Caputo, Cha Rajakaruna and Costanza Emanueli 2015. Non coding RNAs in aortic aneurysmal disease. Frontiers in genetics. Vol 6 (Issue APR, Article: 125). https://doi.org/10.3389/fgene.2015.00125
cAMP-induced actin cytoskeleton remodelling inhibits MKL1-dependent expression of the chemotactic and pro-proliferative factor, CCN1.
Duggirala, A., Kimura TE, Sala-Newby GB, Johnson JL, Wu YJ, Newby AC and Bond M 2014. cAMP-induced actin cytoskeleton remodelling inhibits MKL1-dependent expression of the chemotactic and pro-proliferative factor, CCN1. Journal of molecular and cellular cardiology. Vol 79 (Feb 2015), pp. 157 - 168. https://doi.org/10.1016/j.yjmcc.2014.11.012
Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells.
Tomomi E. Kimura, Duggirala, A., Charles C.T. Hindmarch, Richard C. Hewer, Mei-Zhen Cui, Andrew C. Newby and Mark Bond 2014. Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells. Journal of molecular and cellular cardiology. Vol 72 (July 2014), pp. 9 - 19. https://doi.org/10.1016/j.yjmcc.2014.02.001
Differences in smoking associated DNA methylation patterns in South Asians and Europeans.
Hannah R Elliott, Tillin, Therese, McArdle, Wendy L., Ho, Karen, Duggirala, A., Frayling, Tim M., Smith, George Davey, Hughes, Alun D., Chaturvedi, Nish and Relton, Caroline L. 2014. Differences in smoking associated DNA methylation patterns in South Asians and Europeans. Clinical Epigenetics. Vol 6 (2014), p. 4. https://doi.org/10.1186/1868-7083-6-4