Inductance-Based Flexible Pressure Sensor for Assistive Gloves

Conference paper


Oliver Ozioko, Hersh, M. and Dahiya, R. 2018. Inductance-Based Flexible Pressure Sensor for Assistive Gloves. 2018 IEEE SENSORS. IEEE. https://doi.org/10.1109/icsens.2018.8589826
AuthorsOliver Ozioko, Hersh, M. and Dahiya, R.
TypeConference paper
Abstract

This paper presents an inductance-based flexible pressure sensor to support the tactile communication between deafblind people. The pressure sensor was realized with a soft ferromagnetic elastomer and a 17μm-thick coil fabricated on a 50 μm thick flexible polyimide sheet. The ferromagnetic elastomer acts as the core of the coil, which when pressed, sees the metal particles moving closer to each other and leads to changes in the inductance. The coil, with 75μm wide wires and 25μm pitch, was realized using LIGA (Lithographie Galvanoformung, Abformung) micro molding technique. Four different sensors have been fabricated using different ratios (1:1, 2:1, 3:1 and 5:1) of ecoflex and iron nanoparticles. The results show that the higher the ratio the better the response of the sensor. The presented sensor is intended to be integrated in a smart glove having dual function of tactile sensing and vibrotactile feedback.

KeywordsPressure sensor; Tactile sensor ; Smart Glove
Year2018
Conference 2018 IEEE SENSORS
PublisherIEEE
ISSN 2168-9229
Digital Object Identifier (DOI)https://doi.org/10.1109/icsens.2018.8589826
Web address (URL)https://eprints.gla.ac.uk/201381/1/201381.pdf
https://ieeexplore.ieee.org/document/8589826
ISBN978-1-5386-4707-3
Output statusPublished
Publication dates27 Dec 2018
Publication process dates
Deposited20 Jun 2024
Permalink -

https://repository.derby.ac.uk/item/q6yz8/inductance-based-flexible-pressure-sensor-for-assistive-gloves

  • 9
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Capacitive Sensors based on Recycled Carbon Fibre (rCF) Composites
Ozioko, O., Odiyi, D., Diala, U., Akinbami, F., Emu, M. and Shafik, M. 2024. Capacitive Sensors based on Recycled Carbon Fibre (rCF) Composites. Sensors. 24 (14), p. 4731. https://doi.org/10.3390/s24144731
3D-Printed Perceptive Robotic End-Effectors with Embedded Multimodal Sensors
Chirila, R., Dahiya, A.S., Ozioko, O., Schyns, P.G. and Dahiya, R. 2024. 3D-Printed Perceptive Robotic End-Effectors with Embedded Multimodal Sensors. IEEE Sensors Letters. 2 (3), pp. 1-4. https://doi.org/10.1109/LSENS.2024.3401871
Spray Coated Piezoresistive Bend Sensor for Controlled Movements in Soft Robots
Oliver Ozioko and Ravinder Dahiya 2022. Spray Coated Piezoresistive Bend Sensor for Controlled Movements in Soft Robots. 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE. https://doi.org/10.1109/fleps53764.2022.9781547
Ultra‐High Gauge Factor Strain Sensor with Wide‐Range Stretchability
Kumaresan, Y., Mishra, S., Oliver Ozioko, Chirila, R. and Dahiya, R. 2022. Ultra‐High Gauge Factor Strain Sensor with Wide‐Range Stretchability. Advanced Intelligent Systems. 4 (9), pp. 1-9. https://doi.org/10.1002/aisy.202200043
Multidirectional strain sensor using multimaterial 3D printing
Chirila, R., Oliver Ozioko, Schyns, P. G. and Dahiya, R. 2022. Multidirectional strain sensor using multimaterial 3D printing. 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE. https://doi.org/10.1109/fleps53764.2022.9781529
Flexible interfacing circuits for wearable sensors and wireless communication
Moupali Chakraborty, Oliver Ozioko and Ravinder Dahiya 2022. Flexible interfacing circuits for wearable sensors and wireless communication. in: Islam, T., Mukhopadhyay, S. C. and George, B. (ed.) Systems for Printed Flexible Sensors: Design and implementation Bristol IOP Publishing Ltd. pp. 7-19
Interactive Intelligent Systems and Haptic Interfaces
Oliver Ozioko, Nathan, A. and Dahiya, R 2022. Interactive Intelligent Systems and Haptic Interfaces. Advanced Intelligent Systems. 4 (2), pp. 1-3. https://doi.org/10.1002/aisy.202100172
Biomimetic Skin
Ntagios, M., Oliver Ozioko and Dahiya, R. 2022. Biomimetic Skin. in: Cangelosi, A. and Asada, A. (ed.) Cognitive Robotics Cambridge, Massachusetts MIT Press. pp. 145-163
Strain sensors for soft robotic applications
Oliver Ozioko and Dahiya, R. 2022. Strain sensors for soft robotic applications. in: Dahiya, R., Ozioko, O. and Cheng, G. (ed.) Sensory Systems for Robotic Applications Stevenage The Institution of Engineering and Technology (IET).
Soft Sensors for Electronic Skin
Dahiya, A. S., Kumaresan, Y., Oliver Ozioko, Ntagios, M. and Dahiya, R. 2022. Soft Sensors for Electronic Skin. Elsevier. https://doi.org/10.1016/b978-0-12-822548-6.00069-8
Soft Capacitive Pressure Sensor with Enhanced Sensitivity Assisted by ZnO NW Interlayers and Airgap
Kumaresan, Y., Ma, S., Ozioko, O. and Dahiya, R. 2022. Soft Capacitive Pressure Sensor with Enhanced Sensitivity Assisted by ZnO NW Interlayers and Airgap. IEEE Sensors Journal. 22 (5), pp. 3974 - 3982. https://doi.org/10.1109/JSEN.2022.3143030
Highly Sensitive Flexible Capacitive Pressure Sensor with ZnO NW interlayers
Ma, S., Kumaresan, Y., Oliver Ozioko and Dahiya, R. 2021. Highly Sensitive Flexible Capacitive Pressure Sensor with ZnO NW interlayers. 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE. https://doi.org/10.1109/fleps51544.2021.9469704
Multifunctional Electronic Skin with a stack of Temperature and Pressure Sensor Arrays
Kumaresan, Y., Oliver Ozioko and Dahiya, R. 2021. Multifunctional Electronic Skin with a stack of Temperature and Pressure Sensor Arrays. IEEE Sensors Journal. 21 (23), pp. 1-9. https://doi.org/10.1109/jsen.2021.3055458
Analysis of a Soft Haptic Device with Integrated Tactile Sensor and Actuator for Optimal Design
Chirila, R., Oliver Ozioko and Dahiya, R. 2021. Analysis of a Soft Haptic Device with Integrated Tactile Sensor and Actuator for Optimal Design. 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE Computer Society. https://doi.org/10.1109/fleps51544.2021.9469831
SensAct: The Soft and Squishy Tactile Sensor with Integrated Flexible Actuator
Oliver Ozioko, Karipoth, P., Escobedo, P., Ntagios, M., Pullanchiyodan, A. and Ravinder, D. 2021. SensAct: The Soft and Squishy Tactile Sensor with Integrated Flexible Actuator. Advanced Intelligent Systems. 3 (3), pp. 1-12. https://doi.org/10.1002/aisy.201900145
Smart Tactile Gloves for Haptic Interaction, Communication, and Rehabilitation
Oliver Ozioko and Ravinder Dahiya 2021. Smart Tactile Gloves for Haptic Interaction, Communication, and Rehabilitation. Advanced Intelligent Systems. 4 (2), pp. 1-22. https://doi.org/10.1002/aisy.202100091
3D Printed Interdigitated Capacitor Based Tilt Sensor
Oliver Ozioko, Habib Nassar and Ravinder Dahiya 2021. 3D Printed Interdigitated Capacitor Based Tilt Sensor. IEEE Sensors Journal. 21 (23), pp. 1-9. https://doi.org/10.1109/jsen.2021.3058949
Wearable Assistive Tactile Communication Interface Based on Integrated Touch Sensors and Actuators
Oliver Ozioko, Karipoth, P., Hersh, M. and Dahiya, R. 2020. Wearable Assistive Tactile Communication Interface Based on Integrated Touch Sensors and Actuators. IEEE Transactions on Neural Systems and Rehabilitation Engineering. pp. 1-9. https://doi.org/10.1109/tnsre.2020.2986222
Carbon Nanotube/PEDOT: PSS Composite-based Flexible Temperature Sensor with Enhanced Response and Recovery Time
Oliver Ozioko, Kumaresan, Y. and Dahiya, R. 2020. Carbon Nanotube/PEDOT: PSS Composite-based Flexible Temperature Sensor with Enhanced Response and Recovery Time. 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE. https://doi.org/10.1109/fleps49123.2020.9239431
Tacsac: A Wearable Haptic Device with Capacitive Touch-Sensing Capability for Tactile Display
Oliver Ozioko, Navaraj, W., Hersh, M. and Dahiya, R. 2020. Tacsac: A Wearable Haptic Device with Capacitive Touch-Sensing Capability for Tactile Display. Sensors. 20 (17), pp. 1-15. https://doi.org/10.3390/s20174780
Inductance-Based Soft and Flexible Pressure Sensors using Various Compositions of Iron Particles
Oliver Ozioko, Hersh, M. and Dahiya, R. 2020. Inductance-Based Soft and Flexible Pressure Sensors using Various Compositions of Iron Particles. 2019 IEEE SENSORS. IEEE. https://doi.org/10.1109/sensors43011.2019.8956646
Effect of Dielectric and Stiffness of Soft Material between the Electrodes of a Capacitive Pressure Sensor on its Performance
Kumaresan, Y., Oliver Ozioko and Dahiya, R. 2020. Effect of Dielectric and Stiffness of Soft Material between the Electrodes of a Capacitive Pressure Sensor on its Performance. 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE. https://doi.org/10.1109/fleps49123.2020.9239583
3D Printed Capacitive Tilt Sensor
Oliver Ozioko, Nassar, H., Muir, C. and Dahiya, R. 2020. 3D Printed Capacitive Tilt Sensor. 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE. https://doi.org/10.1109/fleps49123.2020.9239573
Tactile Communication System for the Interaction between Deafblind and Robots
Oliver Ozioko, Navaraj, W. T., Yogeswaran, N., Hersh, M. and Dahiya, R. 2018. Tactile Communication System for the Interaction between Deafblind and Robots. 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE. https://doi.org/10.1109/roman.2018.8525725
Capacitive-Piezoelectric Tandem Architecture for Biomimetic Tactile Sensing in Prosthetic Hand
Navarai, W. T., Oliver Ozioko and Dahiya, R. 2018. Capacitive-Piezoelectric Tandem Architecture for Biomimetic Tactile Sensing in Prosthetic Hand. 2018 IEEE SENSORS. IEEE. https://doi.org/10.1109/icsens.2018.8589827
SmartFingerBraille: A tactile sensing and actuation based communication glove for deafblind people
Oliver Ozioko, Taube, W., Hersh, W. and Dahiya, R. 2017. SmartFingerBraille: A tactile sensing and actuation based communication glove for deafblind people. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). IEEE. https://doi.org/10.1109/isie.2017.8001563