ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma

Journal article


Patabendige, A. 2023. ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma. Cancer Research. 83 (14), p. 2421–2437. https://doi.org/10.1158/0008-5472.CAN-23-0186
AuthorsPatabendige, A.
Abstract

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9 to 11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA mutations showed increased sensitivity to ONC201, whereas those harboring TP53 mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992.

Year2023
JournalCancer Research
Journal citation83 (14), p. 2421–2437
PublisherAmerican Association for Cancer Research
ISSN1538-7445
Digital Object Identifier (DOI)https://doi.org/10.1158/0008-5472.CAN-23-0186
Web address (URL)https://aacrjournals.org/cancerres/article/83/14/2421/727693/ONC201-in-Combination-with-Paxalisib-for-the
Output statusPublished
Publication dates
Online15 Jul 2023
Publication process dates
Deposited31 Jul 2025
Permalink -

https://repository.derby.ac.uk/item/qz0q4/onc201-in-combination-with-paxalisib-for-the-treatment-of-h3k27-altered-diffuse-midline-glioma

  • 25
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Altered cerebrospinal fluid clearance and increased intracranial pressure in rats 18 h after experimental cortical ischaemia
Bothwell, S. W., Omileke, D., Hood, R. J., Pepperall, G-D., Azarpeykan, S., Patabendige, A. and Spratt, N. J. 2025. Altered cerebrospinal fluid clearance and increased intracranial pressure in rats 18 h after experimental cortical ischaemia. Brain Disease Mechanisms. 14, pp. 1-12. https://doi.org/10.3389/fnmol.2021.712779
Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options
Patabendige, A. 2023. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. European Journal of Neuroscience. 59 (6), pp. 1359-1385. https://doi.org/10.1111/ejn.16229
The role of the blood-brain barrier during neurological disease and infection
Patabendige, A. and Janigro, D. 2023. The role of the blood-brain barrier during neurological disease and infection. Biochemical Society Transactions. 51 (2), p. 613–626. https://doi.org/10.1042/BST20220830
Astrocytic aquaporin 4 subcellular translocation as a therapeutic target for cytotoxic edema in ischemic stroke
Patabendige, A. 2022. Astrocytic aquaporin 4 subcellular translocation as a therapeutic target for cytotoxic edema in ischemic stroke. Neural Regeneration Research. 17 (12), pp. 2666-2668. https://doi.org/10.4103/1673-5374.339481
Editorial: Cerebrospinal fluid dynamics and intracranial pressure elevation-Novel insights on molecular and physiological mechanisms, and implications for neurological disease
Patabendige, A. 2022. Editorial: Cerebrospinal fluid dynamics and intracranial pressure elevation-Novel insights on molecular and physiological mechanisms, and implications for neurological disease. Frontiers in Molecular Neuroscience. 15. https://doi.org/10.3389/fnmol.2022.1119980
Short-duration hypothermia induction in rats using Models for Studies examining clinical relevance and mechanisms
Patabendige, A. 2021. Short-duration hypothermia induction in rats using Models for Studies examining clinical relevance and mechanisms. Journal of Visualized Experiments. 169. https://doi.org/10.3791/62325
Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes?
Aryal, R. and Patabendige, A. 2021. Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes? Open Biology. 11 (4). https://doi.org/10.1098/rsob.200396
Astrocyte activation in neurovascular damage and repair following ischaemic stroke
Patabendige, A. 2021. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. International Journal of Molecular Sciences. 22 (8), pp. 1-22. https://doi.org/10.3390/ijms22084280
Ultra-short duration hypothermia prevents intracranial pressure elevation following ischaemic stroke in rats
Patabendige, A. 2021. Ultra-short duration hypothermia prevents intracranial pressure elevation following ischaemic stroke in rats. Frontiers in Neurology. 12, pp. 1-9. https://doi.org/10.3389/fneur.2021.684353
Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats
Patabendige, A. 2021. Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats. Scientific Reports. 11, pp. 1-9. https://doi.org/10.1038/s41598-021-01838-7
Decreased intracranial pressure elevation and cerebrospinal fluid outflow resistance: a potential mechanism of hypothermia cerebroprotection following experimental stroke
Patabendige, A. 2021. Decreased intracranial pressure elevation and cerebrospinal fluid outflow resistance: a potential mechanism of hypothermia cerebroprotection following experimental stroke. Brain Sciences. 11 (12), pp. 1-10. https://doi.org/10.3390/brainsci11121589
CSF secretion is not altered by NKCC1 Nor TRPV4 antagonism in healthy rats
Patabendige, A. 2021. CSF secretion is not altered by NKCC1 Nor TRPV4 antagonism in healthy rats. Brain Sciences. 11 (9), pp. 1-13. https://doi.org/10.3390/brainsci11091117