Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats

Journal article


Patabendige, A. 2021. Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats. Scientific Reports. 11, pp. 1-9. https://doi.org/10.1038/s41598-021-01838-7
AuthorsPatabendige, A.
Abstract

Reperfusion therapies re-establish blood flow after arterial occlusion and improve outcome for ischaemic stroke patients. Intracranial pressure (ICP) elevation occurs 18–24 h after experimental stroke. This elevation is prevented by short-duration hypothermia spanning the time of reperfusion. We aimed to determine whether hypothermia-rewarming completed prior to reperfusion, also prevents ICP elevation 24 h post-stroke. Transient middle cerebral artery occlusion was performed on male outbred Wistar rats. Sixty-minute hypothermia to 33 °C, followed by rewarming was induced prior to reperfusion in one group, and after reperfusion in another group. Normothermia controls received identical anaesthesia protocols. ΔICP from pre-stroke to 24 h post-stroke was measured, and infarct volumes were calculated. Rewarming pre-reperfusion prevented ICP elevation (ΔICP = 0.3 ± 3.9 mmHg vs. normothermia ΔICP = 5.2 ± 2.1 mmHg, p = 0.02) and reduced infarct volume (pre-reperfusion = 78.6 ± 23.7 mm3 vs. normothermia = 125.1 ± 44.3 mm3, p = 0.04) 24 h post-stroke. There were no significant differences in ΔICP or infarct volumes between hypothermia groups rewarmed pre- or post-reperfusion. Hypothermia during reperfusion is not necessary for prevention of ICP rise or infarct volume reduction. Short-duration hypothermia may be an applicable early treatment strategy for stroke patients prior to- during-, and after reperfusion therapy.

Year2021
JournalScientific Reports
Journal citation11, pp. 1-9
PublisherNature
Digital Object Identifier (DOI)https://doi.org/10.1038/s41598-021-01838-7
Output statusPublished
Publication dates
Online19 Nov 2021
Publication process dates
Accepted01 Sep 2021
Deposited31 Jul 2025
Permalink -

https://repository.derby.ac.uk/item/qz0q8/short-duration-hypothermia-completed-prior-to-reperfusion-prevents-intracranial-pressure-elevation-following-ischaemic-stroke-in-rats

  • 15
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Altered cerebrospinal fluid clearance and increased intracranial pressure in rats 18 h after experimental cortical ischaemia
Bothwell, S. W., Omileke, D., Hood, R. J., Pepperall, G-D., Azarpeykan, S., Patabendige, A. and Spratt, N. J. 2025. Altered cerebrospinal fluid clearance and increased intracranial pressure in rats 18 h after experimental cortical ischaemia. Brain Disease Mechanisms. 14, pp. 1-12. https://doi.org/10.3389/fnmol.2021.712779
ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma
Patabendige, A. 2023. ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma. Cancer Research. 83 (14), p. 2421–2437. https://doi.org/10.1158/0008-5472.CAN-23-0186
Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options
Patabendige, A. 2023. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. European Journal of Neuroscience. 59 (6), pp. 1359-1385. https://doi.org/10.1111/ejn.16229
The role of the blood-brain barrier during neurological disease and infection
Patabendige, A. and Janigro, D. 2023. The role of the blood-brain barrier during neurological disease and infection. Biochemical Society Transactions. 51 (2), p. 613–626. https://doi.org/10.1042/BST20220830
Astrocytic aquaporin 4 subcellular translocation as a therapeutic target for cytotoxic edema in ischemic stroke
Patabendige, A. 2022. Astrocytic aquaporin 4 subcellular translocation as a therapeutic target for cytotoxic edema in ischemic stroke. Neural Regeneration Research. 17 (12), pp. 2666-2668. https://doi.org/10.4103/1673-5374.339481
Editorial: Cerebrospinal fluid dynamics and intracranial pressure elevation-Novel insights on molecular and physiological mechanisms, and implications for neurological disease
Patabendige, A. 2022. Editorial: Cerebrospinal fluid dynamics and intracranial pressure elevation-Novel insights on molecular and physiological mechanisms, and implications for neurological disease. Frontiers in Molecular Neuroscience. 15. https://doi.org/10.3389/fnmol.2022.1119980
Short-duration hypothermia induction in rats using Models for Studies examining clinical relevance and mechanisms
Patabendige, A. 2021. Short-duration hypothermia induction in rats using Models for Studies examining clinical relevance and mechanisms. Journal of Visualized Experiments. 169. https://doi.org/10.3791/62325
Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes?
Aryal, R. and Patabendige, A. 2021. Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes? Open Biology. 11 (4). https://doi.org/10.1098/rsob.200396
Astrocyte activation in neurovascular damage and repair following ischaemic stroke
Patabendige, A. 2021. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. International Journal of Molecular Sciences. 22 (8), pp. 1-22. https://doi.org/10.3390/ijms22084280
Ultra-short duration hypothermia prevents intracranial pressure elevation following ischaemic stroke in rats
Patabendige, A. 2021. Ultra-short duration hypothermia prevents intracranial pressure elevation following ischaemic stroke in rats. Frontiers in Neurology. 12, pp. 1-9. https://doi.org/10.3389/fneur.2021.684353
Decreased intracranial pressure elevation and cerebrospinal fluid outflow resistance: a potential mechanism of hypothermia cerebroprotection following experimental stroke
Patabendige, A. 2021. Decreased intracranial pressure elevation and cerebrospinal fluid outflow resistance: a potential mechanism of hypothermia cerebroprotection following experimental stroke. Brain Sciences. 11 (12), pp. 1-10. https://doi.org/10.3390/brainsci11121589
CSF secretion is not altered by NKCC1 Nor TRPV4 antagonism in healthy rats
Patabendige, A. 2021. CSF secretion is not altered by NKCC1 Nor TRPV4 antagonism in healthy rats. Brain Sciences. 11 (9), pp. 1-13. https://doi.org/10.3390/brainsci11091117