Astrocyte activation in neurovascular damage and repair following ischaemic stroke

Journal article


Patabendige, A. 2021. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. International Journal of Molecular Sciences. 22 (8), pp. 1-22. https://doi.org/10.3390/ijms22084280
AuthorsPatabendige, A.
Abstract

Transient or permanent loss of tissue perfusion due to ischaemic stroke can lead to damage to the neurovasculature, and disrupt brain homeostasis, causing long-term motor and cognitive deficits. Despite promising pre-clinical studies, clinically approved neuroprotective therapies are lacking. Most studies have focused on neurons while ignoring the important roles of other cells of the neurovascular unit, such as astrocytes and pericytes. Astrocytes are important for the development and maintenance of the blood–brain barrier, brain homeostasis, structural support, control of cerebral blood flow and secretion of neuroprotective factors. Emerging data suggest that astrocyte activation exerts both beneficial and detrimental effects following ischaemic stroke. Activated astrocytes provide neuroprotection and contribute to neurorestoration, but also secrete inflammatory modulators, leading to aggravation of the ischaemic lesion. Astrocytes are more resistant than other cell types to stroke pathology, and exert a regulative effect in response to ischaemia. These roles of astrocytes following ischaemic stroke remain incompletely understood, though they represent an appealing target for neurovascular protection following stroke. In this review, we summarise the astrocytic contributions to neurovascular damage and repair following ischaemic stroke, and explore mechanisms of neuroprotection that promote revascularisation and neurorestoration, which may be targeted for developing novel therapies for ischaemic stroke.

Year2021
JournalInternational Journal of Molecular Sciences
Journal citation22 (8), pp. 1-22
PublisherMDPI
ISSN1422-0067
Digital Object Identifier (DOI)https://doi.org/10.3390/ijms22084280
Output statusPublished
Publication dates
Online20 Apr 2021
Publication process dates
Accepted15 Apr 2021
Deposited31 Jul 2025
Permalink -

https://repository.derby.ac.uk/item/qz0v0/astrocyte-activation-in-neurovascular-damage-and-repair-following-ischaemic-stroke

  • 23
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Altered cerebrospinal fluid clearance and increased intracranial pressure in rats 18 h after experimental cortical ischaemia
Bothwell, S. W., Omileke, D., Hood, R. J., Pepperall, G-D., Azarpeykan, S., Patabendige, A. and Spratt, N. J. 2025. Altered cerebrospinal fluid clearance and increased intracranial pressure in rats 18 h after experimental cortical ischaemia. Brain Disease Mechanisms. 14, pp. 1-12. https://doi.org/10.3389/fnmol.2021.712779
ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma
Patabendige, A. 2023. ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma. Cancer Research. 83 (14), p. 2421–2437. https://doi.org/10.1158/0008-5472.CAN-23-0186
Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options
Patabendige, A. 2023. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. European Journal of Neuroscience. 59 (6), pp. 1359-1385. https://doi.org/10.1111/ejn.16229
The role of the blood-brain barrier during neurological disease and infection
Patabendige, A. and Janigro, D. 2023. The role of the blood-brain barrier during neurological disease and infection. Biochemical Society Transactions. 51 (2), p. 613–626. https://doi.org/10.1042/BST20220830
Astrocytic aquaporin 4 subcellular translocation as a therapeutic target for cytotoxic edema in ischemic stroke
Patabendige, A. 2022. Astrocytic aquaporin 4 subcellular translocation as a therapeutic target for cytotoxic edema in ischemic stroke. Neural Regeneration Research. 17 (12), pp. 2666-2668. https://doi.org/10.4103/1673-5374.339481
Editorial: Cerebrospinal fluid dynamics and intracranial pressure elevation-Novel insights on molecular and physiological mechanisms, and implications for neurological disease
Patabendige, A. 2022. Editorial: Cerebrospinal fluid dynamics and intracranial pressure elevation-Novel insights on molecular and physiological mechanisms, and implications for neurological disease. Frontiers in Molecular Neuroscience. 15. https://doi.org/10.3389/fnmol.2022.1119980
Short-duration hypothermia induction in rats using Models for Studies examining clinical relevance and mechanisms
Patabendige, A. 2021. Short-duration hypothermia induction in rats using Models for Studies examining clinical relevance and mechanisms. Journal of Visualized Experiments. 169. https://doi.org/10.3791/62325
Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes?
Aryal, R. and Patabendige, A. 2021. Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes? Open Biology. 11 (4). https://doi.org/10.1098/rsob.200396
Ultra-short duration hypothermia prevents intracranial pressure elevation following ischaemic stroke in rats
Patabendige, A. 2021. Ultra-short duration hypothermia prevents intracranial pressure elevation following ischaemic stroke in rats. Frontiers in Neurology. 12, pp. 1-9. https://doi.org/10.3389/fneur.2021.684353
Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats
Patabendige, A. 2021. Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats. Scientific Reports. 11, pp. 1-9. https://doi.org/10.1038/s41598-021-01838-7
Decreased intracranial pressure elevation and cerebrospinal fluid outflow resistance: a potential mechanism of hypothermia cerebroprotection following experimental stroke
Patabendige, A. 2021. Decreased intracranial pressure elevation and cerebrospinal fluid outflow resistance: a potential mechanism of hypothermia cerebroprotection following experimental stroke. Brain Sciences. 11 (12), pp. 1-10. https://doi.org/10.3390/brainsci11121589
CSF secretion is not altered by NKCC1 Nor TRPV4 antagonism in healthy rats
Patabendige, A. 2021. CSF secretion is not altered by NKCC1 Nor TRPV4 antagonism in healthy rats. Brain Sciences. 11 (9), pp. 1-13. https://doi.org/10.3390/brainsci11091117