Hugh Rollinson


NameHugh Rollinson
Job titleLNS HE Associate Lecturer
Research instituteCollege of Life and Natural Sciences

Research outputs

The Petrogenesis of late Archaean anorthositic chromitites: New insights from Fiskenæsset, Greenland and Sittampundi, India

Veni, S., Rollinson, H., Burckel, P., Eggins, S., Windley, B. F., Sivry, Y., Loubser, M. and Sajeev, K. 2025. The Petrogenesis of late Archaean anorthositic chromitites: New insights from Fiskenæsset, Greenland and Sittampundi, India. Precambrian Research. 427.

Zircon trace element geochemistry of the neoarchaean late-granite suites along the southern margin of the Zimbabwe craton, Zimbabwe

Chagondah, G. S., Elburg, M. A., Hofmann, A., Rollinson, H., Ueckermann, H. and Vorster, C. 2025. Zircon trace element geochemistry of the neoarchaean late-granite suites along the southern margin of the Zimbabwe craton, Zimbabwe. Journal of African Earth Sciences. 228, pp. 1-13. https://doi.org/10.1016/j.jafrearsci.2025.105619

The significance of water in the genesis of ophiolitic chromitites

Rollinson, H. 2025. The significance of water in the genesis of ophiolitic chromitites. Lithos. 502–503. https://doi.org/10.1016/j.lithos.2025.108022

Magma mingling in plagiogranites of the Oman ophiolite suggests an origin by fractional crystallisation

Rollinson, H. 2024. Magma mingling in plagiogranites of the Oman ophiolite suggests an origin by fractional crystallisation. Lithos. 482-483, pp. 1-12. https://doi.org/10.1016/j.lithos.2024.107725

Neoarchaean and Palaeoproterozoic tectono-metamorphic events along the southern margin of the Zimbabwe craton: Insights from muscovite 40Ar/39Ar geochronology from rare-metal pegmatites, Zimbabwe

Chagondah, G. S., Kramers, J. D., Hofmann, A. and Rollinson, H. 2024. Neoarchaean and Palaeoproterozoic tectono-metamorphic events along the southern margin of the Zimbabwe craton: Insights from muscovite 40Ar/39Ar geochronology from rare-metal pegmatites, Zimbabwe. Journal of African Earth Sciences . 217, pp. 1-12.

The late Archaean granite paradox: A case study from the Zimbabwe Craton

Rollinson, H., Chagondah, G. and Hofmann, A. 2024. The late Archaean granite paradox: A case study from the Zimbabwe Craton. Precambrian Research. 410, pp. 1-11. https://doi.org/10.1016/j.precamres.2024.107491

The late Archaean granite paradox

Rollinson, H., Chagondah, G. S. and Hofmann, A., 2023. The late Archaean granite paradox. Goldschmidt 2023. https://doi.org/10.7185/gold2023.16638

The growth of the Zimbabwe craton during the Neoarchaean

Rollinson, H. 2023. The growth of the Zimbabwe craton during the Neoarchaean. Contributions to Mineralogy and Petrology. 178, pp. 1-16. https://doi.org/10.1007/s00410-022-01978-7

Ferric iron in chrome-bearing spinels: implications for microprobe correction procedures

Rollinson, H. and Adetunji, J. 2023. Ferric iron in chrome-bearing spinels: implications for microprobe correction procedures. Mineralogical Magazine. 87 (5), pp. 702-710. https://doi.org/10.1180/mgm.2023.68

The rare earth element geochemistry of mafic granulites from the Neoarchaean northern marginal zone of the Limpopo Belt

Rollinson, H. 2022. The rare earth element geochemistry of mafic granulites from the Neoarchaean northern marginal zone of the Limpopo Belt. Journal of African Earth Sciences. 186, pp. 1-12. https://doi.org/10.1016/j.jafrearsci.2021.104434

Do all Archaean TTG rock compositions represent former melts

Rollinson, H. 2025. Do all Archaean TTG rock compositions represent former melts. Precambrian Research. 367, pp. 1-13. https://doi.org/10.1016/j.precamres.2021.106448

No plate tectonics necessary to explain Eoarchean rocks at Isua (Greenland)

Rollinson, H. 2021. No plate tectonics necessary to explain Eoarchean rocks at Isua (Greenland). Geology. 50 (2), p. 147–151. https://doi.org/10.1130/G49278.1

Using geochemical data to understand geological processes

Rollinson, H. and Pease, V. (ed.) 2021. Using geochemical data to understand geological processes. Cambridge University Press.

The origin of the Earth’s continental crust

Rollinson, H. 2021. The origin of the Earth’s continental crust. Teaching Earth Sciences. 46, pp. 38-43.

Ethical challenges for mineral resource extraction in Sierra Leone

Rollinson, H. 2020. Ethical challenges for mineral resource extraction in Sierra Leone. The EGU General Assembly 2020. European Geosciences Union. https://doi.org/10.5194/egusphere-egu2020-2636

The eastern French Pyrenees: from mountain belt to foreland basin

Satterfield, Dorothy, Rollinson, H. and Suthren, Roger 2019. The eastern French Pyrenees: from mountain belt to foreland basin. Geology Today. 35 (6), pp. 228-240. https://doi.org/10.1111/gto.12291

Dunites in the mantle section of the Oman ophiolite – The boninite connection

Rollinson, H. 2019. Dunites in the mantle section of the Oman ophiolite – The boninite connection. Lithos. 334–335, pp. 1-7. https://doi.org/10.1016/j.lithos.2019.03.008

Ethical challenges in mineral resource extraction: a case study from Sierra Leone

Rollinson, H. 2019. Ethical challenges in mineral resource extraction: a case study from Sierra Leone. Geoscience and Society Summit, Stockholm. American Geophysical Union (AGU).

Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt

Rollinson, H., Mameri, L. and Barry, T. 2018. Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt. Lithos. 310–311, pp. 381-391. https://doi.org/10.1016/j.lithos.2018.04.024

Evidence for melting mud in Earth’s mantle from extreme oxygen isotope signatures in zircon

Spencer, Christopher J., Cavosie, Aaron J., Raub, Timothy D., Rollinson, Hugh, Jeon, Heejin, Searle, Michael P., Miller, Jodie A., McDonald, Bradley J. and Evans, Noreen J. 2017. Evidence for melting mud in Earth’s mantle from extreme oxygen isotope signatures in zircon. Geology. 45 (11), pp. 1-17. https://doi.org/10.1130/G39402.1

Ionic Radii

Rollinson, Hugh and Adetunji, Jacob 2017. Ionic Radii. in: White, W. M. (ed.) Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth New York Springer International Publishing. pp. 1-6

There were no large volumes of felsic continental crust in the early Earth

Rollinson, Hugh 2017. There were no large volumes of felsic continental crust in the early Earth. Geosphere. 13 (2), p. 235–246. https://doi.org/10.1130/GES01437.1

Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland

Szilas, Kristoffer, van Hinsberg, Vincent J., McDonald, Iain, Næraa, Tomas, Rollinson, Hugh, Adetunji, Jacob and Bird, Dennis 2017. Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland. Geoscience Frontiers. 9 (3), pp. 1-26. https://doi.org/10.1016/j.gsf.2017.05.003

Masirah – The other Oman ophiolite: A better analogue for mid-ocean ridge processes?

Rollinson, Hugh 2017. Masirah – The other Oman ophiolite: A better analogue for mid-ocean ridge processes? Geoscience Frontiers. 8 (6), pp. 1-10. https://doi.org/10.1016/j.gsf.2017.04.009

Archaean chromitites show constant Fe 3+ /ΣFe in Earth's asthenospheric mantle since 3.8 Ga

Rollinson, Hugh, Adetunji, Jacob, Lenaz, Davide and Szilas, Kristoffer 2017. Archaean chromitites show constant Fe 3+ /ΣFe in Earth's asthenospheric mantle since 3.8 Ga. Lithos. 282-283, pp. 316-325. https://doi.org/10.1016/j.lithos.2017.03.020

Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast

Rollinson, Hugh 2016. Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast. Precambrian Research. 281, pp. 1-12. https://doi.org/10.1016/j.precamres.2016.05.005

Comment on ‘Podiform chromitites do form beneath mid-ocean ridges’ by Arai, S. and Miura, M.

Rollinson, Hugh and Adetunji, Jacob 2016. Comment on ‘Podiform chromitites do form beneath mid-ocean ridges’ by Arai, S. and Miura, M. Lithos. 254-255, pp. 131-133. https://doi.org/10.1016/j.lithos.2015.10.023

Surprises from the top of the mantle transition zone

Rollinson, Hugh 2016. Surprises from the top of the mantle transition zone. Geology Today. 32 (2), pp. 58-64. https://doi.org/10.1111/gto.12130

Chromite in the mantle section of the Oman Ophiolite: Implications for the tectonic evolution of the Oman Ophiolite

Rollinson, Hugh and Adetunji, Jacob 2015. Chromite in the mantle section of the Oman Ophiolite: Implications for the tectonic evolution of the Oman Ophiolite. Acta Geologica Sineca. 89 (Supp.2), pp. 73-76. https://doi.org/10.1111/1755-6724.12308_44

Determination of Fe3+/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite

Lenaz, Davide, Adetunji, Jacob and Rollinson, Hugh 2014. Determination of Fe3+/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite. Contributions to Mineralogy and Petrology. 167 (958), pp. 1-17. https://doi.org/10.1007/s00410-013-0958-2

The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review

Rollinson, Hugh and Adetunji, Jacob 2015. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review. Gondwana Research. 27 (2), pp. 1-12. https://doi.org/10.1016/j.gr.2013.07.013
  • 1277
    total views of outputs
  • 610
    total downloads of outputs
  • 67
    views of outputs this month
  • 18
    downloads of outputs this month