Chromite in the mantle section of the Oman Ophiolite: Implications for the tectonic evolution of the Oman Ophiolite
Journal article
Authors | Rollinson, Hugh and Adetunji, Jacob |
---|---|
Abstract | Chromite in the Oman ophiolite is located in the mantle section of the ophiolite sequence and forms abundant small podiformdeposits throughout the length of the ophiolite (Rollinson, 2005).The Oman ophiolite has an exposed mantle section of ca 10 000 km2, and contains ca 200 chromitite bodies. Most are less than 10 000 tonnes and a only a few are >30 000 tonnes (Boudier and Al-Rajhi, 2014). We have examined these deposits in eight different areas of the ophiolite (Figure 1, Rollinson and Adetunji, 2013a), two of which we have studied in great detail – in WadiRajmi in the north of Oman (Rollinson, 2008) and atMaqsad in the south(Rollinson and Adetunji, 2013b). |
Keywords | Chromite; Oman ophiolite; Earth science |
Year | 2015 |
Journal | Acta Geologica Sineca |
Journal citation | 89 (Supp.2), pp. 73-76 |
Publisher | Wiley |
ISSN | 1755-6724 |
Digital Object Identifier (DOI) | https://doi.org/10.1111/1755-6724.12308_44 |
Web address (URL) | https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-6724.12308_44 |
hdl:10545/621505 | |
Output status | Published |
Publication dates | 06 Dec 2015 |
Publication process dates | |
Deposited | 22 Mar 2017, 14:22 |
Contributors | University of Derby |
File | File Access Level Restricted |
File | License File Access Level Open |
https://repository.derby.ac.uk/item/94510/chromite-in-the-mantle-section-of-the-oman-ophiolite-implications-for-the-tectonic-evolution-of-the-oman-ophiolite
Download files
83
total views47
total downloads2
views this month1
downloads this month
Export as
Related outputs
The significance of water in the genesis of ophiolitic chromitites
Rollinson, H. 2025. The significance of water in the genesis of ophiolitic chromitites. Lithos. 502–503. https://doi.org/10.1016/j.lithos.2025.108022Do all Archaean TTG rock compositions represent former melts
Rollinson, H. 2025. Do all Archaean TTG rock compositions represent former melts. Precambrian Research. 367, pp. 1-13. https://doi.org/10.1016/j.precamres.2021.106448Zircon trace element geochemistry of the neoarchaean late-granite suites along the southern margin of the Zimbabwe craton, Zimbabwe
Chagondah, G. S., Elburg, M. A., Hofmann, A., Rollinson, H., Ueckermann, H. and Vorster, C. 2025. Zircon trace element geochemistry of the neoarchaean late-granite suites along the southern margin of the Zimbabwe craton, Zimbabwe. Journal of African Earth Sciences. 228, pp. 1-13. https://doi.org/10.1016/j.jafrearsci.2025.105619Neoarchaean and Palaeoproterozoic tectono-metamorphic events along the southern margin of the Zimbabwe craton: Insights from muscovite 40Ar/39Ar geochronology from rare-metal pegmatites, Zimbabwe
Chagondah, G. S., Kramers, J. D., Hofmann, A. and Rollinson, H. 2024. Neoarchaean and Palaeoproterozoic tectono-metamorphic events along the southern margin of the Zimbabwe craton: Insights from muscovite 40Ar/39Ar geochronology from rare-metal pegmatites, Zimbabwe. Journal of African Earth Sciences . 217, pp. 1-12.Magma mingling in plagiogranites of the Oman ophiolite suggests an origin by fractional crystallisation
Rollinson, H. 2024. Magma mingling in plagiogranites of the Oman ophiolite suggests an origin by fractional crystallisation. Lithos. 482-483, pp. 1-12. https://doi.org/10.1016/j.lithos.2024.107725The late Archaean granite paradox: A case study from the Zimbabwe Craton
Rollinson, H., Chagondah, G. and Hofmann, A. 2024. The late Archaean granite paradox: A case study from the Zimbabwe Craton. Precambrian Research. 410, pp. 1-11. https://doi.org/10.1016/j.precamres.2024.107491The late Archaean granite paradox
Rollinson, H., Chagondah, G. S. and Hofmann, A., 2023. The late Archaean granite paradox. Goldschmidt 2023. https://doi.org/10.7185/gold2023.16638Ferric iron in chrome-bearing spinels: implications for microprobe correction procedures
Rollinson, H. and Adetunji, J. 2023. Ferric iron in chrome-bearing spinels: implications for microprobe correction procedures. Mineralogical Magazine. 87 (5), pp. 702-710. https://doi.org/10.1180/mgm.2023.68The growth of the Zimbabwe craton during the Neoarchaean
Rollinson, H. 2023. The growth of the Zimbabwe craton during the Neoarchaean. Contributions to Mineralogy and Petrology. 178, pp. 1-16. https://doi.org/10.1007/s00410-022-01978-7The rare earth element geochemistry of mafic granulites from the Neoarchaean northern marginal zone of the Limpopo Belt
Rollinson, H. 2022. The rare earth element geochemistry of mafic granulites from the Neoarchaean northern marginal zone of the Limpopo Belt. Journal of African Earth Sciences. 186, pp. 1-12. https://doi.org/10.1016/j.jafrearsci.2021.104434The origin of the Earth’s continental crust
Rollinson, H. 2021. The origin of the Earth’s continental crust. Teaching Earth Sciences. 46, pp. 38-43.No plate tectonics necessary to explain Eoarchean rocks at Isua (Greenland)
Rollinson, H. 2021. No plate tectonics necessary to explain Eoarchean rocks at Isua (Greenland). Geology. 50 (2), p. 147–151. https://doi.org/10.1130/G49278.1Ethical challenges for mineral resource extraction in Sierra Leone
Rollinson, H. 2020. Ethical challenges for mineral resource extraction in Sierra Leone. The EGU General Assembly 2020. European Geosciences Union. https://doi.org/10.5194/egusphere-egu2020-2636Dunites in the mantle section of the Oman ophiolite – The boninite connection
Rollinson, H. 2019. Dunites in the mantle section of the Oman ophiolite – The boninite connection. Lithos. 334–335, pp. 1-7. https://doi.org/10.1016/j.lithos.2019.03.008Ethical challenges in mineral resource extraction: a case study from Sierra Leone
Rollinson, H. 2019. Ethical challenges in mineral resource extraction: a case study from Sierra Leone. Geoscience and Society Summit, Stockholm. American Geophysical Union (AGU).The eastern French Pyrenees: from mountain belt to foreland basin
Satterfield, Dorothy, Rollinson, H. and Suthren, Roger 2019. The eastern French Pyrenees: from mountain belt to foreland basin. Geology Today. 35 (6), pp. 228-240. https://doi.org/10.1111/gto.12291Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt
Rollinson, H., Mameri, L. and Barry, T. 2018. Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt. Lithos. 310–311, pp. 381-391. https://doi.org/10.1016/j.lithos.2018.04.024
Trevorite: Ni-rich spinel formed by metasomatism and desulfurization processes at Bon Accord, South Africa?
O'Driscoll, Brian, Clay, Patricia L., Cawthorn, R. Grant, Lenaz, Davide, Adetunji, Jacob and Kronz, Andreas 2014. Trevorite: Ni-rich spinel formed by metasomatism and desulfurization processes at Bon Accord, South Africa? Mineralogical Magazine. https://doi.org/10.1180/minmag.2014.078.1.11
UK pension changes in 2015: some mathematical considerations
Stubbs, John and Adetunji, Jacob 2016. UK pension changes in 2015: some mathematical considerations. The Mathematical Gazette. https://doi.org/10.1017/mag.2016.55Explainer: what dust from the Sahara does to you and the planet
Adetunji, Jacob 2016. Explainer: what dust from the Sahara does to you and the planet. The Conversation.
Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain
Huggett, Jennifer, Cuadros, Javier, Gale, Andrew S., Wray, David and Adetunji, Jacob 2016. Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain. Applied Clay Science. https://doi.org/10.1016/j.clay.2016.06.016
57Fe Mössbauer spectroscopy investigations of iron oxidation states in the Harmattan dust nutrient contribution to West African soils
Adetunji, Jacob 2014. 57Fe Mössbauer spectroscopy investigations of iron oxidation states in the Harmattan dust nutrient contribution to West African soils. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2014.09.025