Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain

Journal article


Huggett, Jennifer, Cuadros, Javier, Gale, Andrew S., Wray, David and Adetunji, Jacob 2016. Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain. Applied Clay Science. https://doi.org/10.1016/j.clay.2016.06.016
AuthorsHuggett, Jennifer, Cuadros, Javier, Gale, Andrew S., Wray, David and Adetunji, Jacob
Abstract

The aim of this study was to further our understanding of the pedogenic and lacustrine modification of clay minerals. Some of these modifications are of special interest because they constitute reverse weathering reactions, rare in surface environments, and because there is not yet an accurate assessment of their global relevance in mineralogical and geochemical cycles. For this study, two sections from the Central System in Spain were selected. Both are sections through the Uppper Cenomanian-Turonian mixed clastic and carbonate succession, containing both calcite and dolomite, in the Sierra de Guadarrama. Mid-Turonian sea level fall resulted in the formation of a coastal plain environment in which extensive pedogenesis occurred around saline lagoons. The mineralogical changes that have occurred as a result of sedimentation in saline lagoons and as a consequence of pedogenesis are described. Textural relationships indicate that the dolomite cement pre-dates the calcite. Silicate minerals are represented by quartz, kaolinite, illite-smectite, illite, minor plagioclase and alkali feldspar, and trace chlorite and palygorskite. There is a positive correlation between the intensity of pedogenesis and the proportion of illite in the clay assemblage in one of the sections, indicating pedogenic illitisation. In this section, the intensity of the illitisation process increases up, reaching a maximum where pedogenesis is most intense in the middle part, and then decreases as marine influence increases towards the top of the Alcorlo Formation and the overlying marine Tranquera Formation. The clay assemblages are consistent with a slow transformation process from kaolinite to illite by way of illite-smectite, taking place under surface conditions. The illitisation process has resulted in a less Fe-rich, more Mg-, and Al-rich illite than the majority of previously documented cases in the near surface. Formation of Al-rich illite is not therefore restricted to the deep subsurface. The mechanism for low temperature illitisation involves enhanced layer charge resulting from Mg2 + substitution for Al3 + (or Fe3 +) and Fe3 + to Fe2 + reduction. Mg2 + enrichment may have occurred principally in saline lagoons or lakes, while Fe3 + to Fe2 + reduction occurred as a result of wetting and drying in a pedogenic environment. So far as it has been possible to establish, this dual mechanism has not previously been documented. This study indicates clearly that the dolomite and calcite are authigenic cements that precipitated in a clastic sediment, probably soon after deposition. Dolomitisation and Mg enrichment of the clay may have occurred at the same time. Seawater is the most probable source of Mg.

The aim of this study was to further our understanding of the pedogenic and lacustrine modification of clay minerals. Some of these modifications are of special interest because they constitute reverse weathering reactions, rare in surface environments, and because there is not yet an accurate assessment of their global relevance in mineralogical and geochemical cycles. For this study, two sections from the Central System in Spain were selected. Both are sections through the Uppper Cenomanian-Turonian mixed clastic and carbonate succession, containing both calcite and dolomite, in the Sierra de Guadarrama. Mid-Turonian sea level fall resulted in the formation of a coastal plain environment in which extensive pedogenesis occurred around saline lagoons. The mineralogical changes that have occurred as a result of sedimentation in saline lagoons and as a consequence of pedogenesis are described. Textural relationships indicate that the dolomite cement pre-dates the calcite. Silicate minerals are represented by quartz, kaolinite, illite-smectite, illite, minor plagioclase and alkali feldspar, and trace chlorite and palygorskite. There is a positive correlation between the intensity of pedogenesis and the proportion of illite in the clay assemblage in one of the sections, indicating pedogenic illitisation. In this section, the intensity of the illitisation process increases up, reaching a maximum where pedogenesis is most intense in the middle part, and then decreases as marine influence increases towards the top of the Alcorlo Formation and the overlying marine Tranquera Formation. The clay assemblages are consistent with a slow transformation process from kaolinite to illite by way of illite-smectite, taking place under surface conditions. The illitisation process has resulted in a less Fe-rich, more Mg-, and Al-rich illite than the majority of previously documented cases in the near surface. Formation of Al-rich illite is not therefore restricted to the deep subsurface.

The mechanism for low temperature illitisation involves enhanced layer charge resulting from Mg2 + substitution for Al3 + (or Fe3 +) and Fe3 + to Fe2 + reduction. Mg2 + enrichment may have occurred principally in saline lagoons or lakes, while Fe3 + to Fe2 + reduction occurred as a result of wetting and drying in a pedogenic environment. So far as it has been possible to establish, this dual mechanism has not previously been documented. This study indicates clearly that the dolomite and calcite are authigenic cements that precipitated in a clastic sediment, probably soon after deposition. Dolomitisation and Mg enrichment of the clay may have occurred at the same time. Seawater is the most probable source of Mg.

KeywordsPedogenesis; Clay minerals; Illitisation
Year2016
JournalApplied Clay Science
PublisherElsevier
ISSN1691317
Digital Object Identifier (DOI)https://doi.org/10.1016/j.clay.2016.06.016
Web address (URL)http://hdl.handle.net/10545/621566
hdl:10545/621566
Publication dates30 Jun 2016
Publication process dates
Deposited25 Apr 2017, 14:44
Accepted22 Jun 2016
Rights

Archived with thanks to Applied Clay Science

ContributorsNatural History Museum, University of Portsmouth, University of Greenwich and University of Derby
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/94q3x/low-temperature-authigenic-illite-and-carbonates-in-a-mixed-dolomite-clastic-lagoonal-and-pedogenic-setting-spanish-central-system-spain

Download files

  • 39
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Trevorite: Ni-rich spinel formed by metasomatism and desulfurization processes at Bon Accord, South Africa?
O'Driscoll, Brian, Clay, Patricia L., Cawthorn, R. Grant, Lenaz, Davide, Adetunji, Jacob and Kronz, Andreas 2014. Trevorite: Ni-rich spinel formed by metasomatism and desulfurization processes at Bon Accord, South Africa? Mineralogical Magazine. https://doi.org/10.1180/minmag.2014.078.1.11
UK pension changes in 2015: some mathematical considerations
Stubbs, John and Adetunji, Jacob 2016. UK pension changes in 2015: some mathematical considerations. The Mathematical Gazette. https://doi.org/10.1017/mag.2016.55
Explainer: what dust from the Sahara does to you and the planet
Adetunji, Jacob 2016. Explainer: what dust from the Sahara does to you and the planet. The Conversation.
57Fe Mössbauer spectroscopy investigations of iron oxidation states in the Harmattan dust nutrient contribution to West African soils
Adetunji, Jacob 2014. 57Fe Mössbauer spectroscopy investigations of iron oxidation states in the Harmattan dust nutrient contribution to West African soils. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2014.09.025
Mineralogical and geochemical characterisation of warm-water, shallow-marine glaucony from the Tertiary of the London Basin
Huggett, Jennifer, Adetunji, Jacob, Longstaffe, Fred and Wray, David 2017. Mineralogical and geochemical characterisation of warm-water, shallow-marine glaucony from the Tertiary of the London Basin. Clay Minerals. https://doi.org/10.1180/claymin.2017.052.1.02
Archaean chromitites show constant Fe 3+ /ΣFe in Earth's asthenospheric mantle since 3.8 Ga
Rollinson, Hugh, Adetunji, Jacob, Lenaz, Davide and Szilas, Kristoffer 2017. Archaean chromitites show constant Fe 3+ /ΣFe in Earth's asthenospheric mantle since 3.8 Ga. Lithos. 282-283, pp. 316-325. https://doi.org/10.1016/j.lithos.2017.03.020
Ionic Radii
Rollinson, Hugh and Adetunji, Jacob 2017. Ionic Radii. in: White, W. M. (ed.) Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth New York Springer International Publishing. pp. 1-6
Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland
Szilas, Kristoffer, van Hinsberg, Vincent J., McDonald, Iain, Næraa, Tomas, Rollinson, Hugh, Adetunji, Jacob and Bird, Dennis 2017. Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland. Geoscience Frontiers. 9 (3), pp. 1-26. https://doi.org/10.1016/j.gsf.2017.05.003
Comment on ‘Podiform chromitites do form beneath mid-ocean ridges’ by Arai, S. and Miura, M.
Rollinson, Hugh and Adetunji, Jacob 2016. Comment on ‘Podiform chromitites do form beneath mid-ocean ridges’ by Arai, S. and Miura, M. Lithos. 254-255, pp. 131-133. https://doi.org/10.1016/j.lithos.2015.10.023
Chromite in the mantle section of the Oman Ophiolite: Implications for the tectonic evolution of the Oman Ophiolite
Rollinson, Hugh and Adetunji, Jacob 2015. Chromite in the mantle section of the Oman Ophiolite: Implications for the tectonic evolution of the Oman Ophiolite. Acta Geologica Sineca. 89 (Supp.2), pp. 73-76. https://doi.org/10.1111/1755-6724.12308_44
The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review
Rollinson, Hugh and Adetunji, Jacob 2015. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review. Gondwana Research. 27 (2), pp. 1-12. https://doi.org/10.1016/j.gr.2013.07.013
Determination of Fe3+/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite
Lenaz, Davide, Adetunji, Jacob and Rollinson, Hugh 2014. Determination of Fe3+/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite. Contributions to Mineralogy and Petrology. 167 (958), pp. 1-17. https://doi.org/10.1007/s00410-013-0958-2