Determination of Fe3+/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite

Journal article


Lenaz, Davide, Adetunji, Jacob and Rollinson, Hugh 2014. Determination of Fe3+/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite. Contributions to Mineralogy and Petrology. https://doi.org/10.1007/s00410-013-0958-2
AuthorsLenaz, Davide, Adetunji, Jacob and Rollinson, Hugh
Abstract

We present the results of a comparative study in which we have measured Fe3+/ΣFe ratios in chromites from mantle chromitites in the Oman ophiolite using Mössbauer spectroscopy and single-crystal X-ray diffraction. We have compared these results with ratios calculated from mineral stoichiometry and find that mineral stoichiometry calculations do not accurately reflect the measured Fe3+/ΣFe ratios. We have identified three groups of samples. The majority preserve Fe3+/ΣFe ratios which are thought to be magmatic, whereas a few samples are highly oxidized and have high Fe3+/ΣFe ratios. There is also a group of partially oxidized samples. The oxidized chromites show anomalously low cell edge (a0) values and their oxygen positional parameters among the lowest ever found for chromites. Site occupancy calculations show that some chromites are non-stoichiometric and contain vacancies in their structure randomly distributed between both the T and M sites. The field relationships suggest that the oxidation of the magmatic chromitites took place in association with a ductile shear zone in mantle harzburgites. Primary magmatic Fe3+/ΣFe ratios measured for the Oman mantle chromitites are between 0.193–0.285 (X-ray data) and 0.164–0.270 (Mössbauer data) and preserve a range of Fe3+/ΣFe ratios which we propose is real and reflects differences in the composition of the magmas parental to the chromitites. The range of values extends from those MORB melts (0.16 ± 0.1) to those for arc basalts (0.22–0.28).

KeywordsCr-spinel chromitite; Oman; X-ray single-crystal diffraction; Oxidation processes
Year2014
JournalContributions to Mineralogy and Petrology
PublisherSpringer
ISSN107999
14320967
Digital Object Identifier (DOI)https://doi.org/10.1007/s00410-013-0958-2
Web address (URL)http://hdl.handle.net/10545/621503
hdl:10545/621503
Publication dates03 Jan 2014
Publication process dates
Deposited22 Mar 2017, 11:42
Accepted12 Dec 2013
Rights

Archived with thanks to Contributions to Mineralogy and Petrology

ContributorsUniversity of Derby
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/94zv1/determination-of-fe3-fe-ratios-in-chrome-spinels-using-a-combined-m-ssbauer-and-single-crystal-x-ray-approach-application-to-chromitites-from-the-mantle-section-of-the-oman-ophiolite

Download files

  • 7
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

The eastern French Pyrenees: from mountain belt to foreland basin
Satterfield, Dorothy, Rollinson, Hugh and Suthren, Roger 2019. The eastern French Pyrenees: from mountain belt to foreland basin. Geology Today. 35 (6), pp. 228-240. https://doi.org/10.1111/gto.12291
Ionic radii
Rollinson, Hugh and Adetunji, Jacob 2017. Ionic radii. in: Springer International Publishing.
Evidence for melting mud in Earth’s mantle from extreme oxygen isotope signatures in zircon.
Spencer, Christopher J., Cavosie, Aaron J., Raub, Timothy D., Rollinson, Hugh, Jeon, Heejin, Searle, Michael P., Miller, Jodie A., McDonald, Bradley J. and Evans, Noreen J. 2017. Evidence for melting mud in Earth’s mantle from extreme oxygen isotope signatures in zircon. Geology. https://doi.org/10.1130/G39402.1
Masirah – The other Oman ophiolite: A better analogue for mid-ocean ridge processes?
Rollinson, Hugh 2017. Masirah – The other Oman ophiolite: A better analogue for mid-ocean ridge processes? Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2017.04.009
Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland
Szilas, Kristoffer, van Hinsberg, Vincent J., McDonald, Iain, Næraa, Tomas, Rollinson, Hugh, Adetunji, Jacob and Bird, Dennis 2017. Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2017.05.003
Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast
Rollinson, Hugh 2016. Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast. Precambrian Research. https://doi.org/10.1016/j.precamres.2016.05.005
Surprises from the top of the mantle transition zone
Rollinson, Hugh 2016. Surprises from the top of the mantle transition zone. Geology Today. https://doi.org/10.1111/gto.12130
Trevorite: Ni-rich spinel formed by metasomatism and desulfurization processes at Bon Accord, South Africa?
O'Driscoll, Brian, Clay, Patricia L., Cawthorn, R. Grant, Lenaz, Davide, Adetunji, Jacob and Kronz, Andreas 2014. Trevorite: Ni-rich spinel formed by metasomatism and desulfurization processes at Bon Accord, South Africa? Mineralogical Magazine. https://doi.org/10.1180/minmag.2014.078.1.11
The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review
Rollinson, Hugh and Adetunji, Jacob 2015. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review. Gondwana Research. https://doi.org/10.1016/j.gr.2013.07.013
Comment on ‘Podiform chromitites do form beneath mid-ocean ridges’ by Arai, S. and Miura, M.
Rollinson, Hugh and Adetunji, Jacob 2016. Comment on ‘Podiform chromitites do form beneath mid-ocean ridges’ by Arai, S. and Miura, M. Lithos. https://doi.org/10.1016/j.lithos.2015.10.023
UK pension changes in 2015: some mathematical considerations
Stubbs, John and Adetunji, Jacob 2016. UK pension changes in 2015: some mathematical considerations. The Mathematical Gazette. https://doi.org/10.1017/mag.2016.55
Explainer: what dust from the Sahara does to you and the planet
Adetunji, Jacob 2016. Explainer: what dust from the Sahara does to you and the planet. The Conversation.
Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain
Huggett, Jennifer, Cuadros, Javier, Gale, Andrew S., Wray, David and Adetunji, Jacob 2016. Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain. Applied Clay Science. https://doi.org/10.1016/j.clay.2016.06.016
57Fe Mössbauer spectroscopy investigations of iron oxidation states in the Harmattan dust nutrient contribution to West African soils
Adetunji, Jacob 2014. 57Fe Mössbauer spectroscopy investigations of iron oxidation states in the Harmattan dust nutrient contribution to West African soils. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2014.09.025
Mineralogical and geochemical characterisation of warm-water, shallow-marine glaucony from the Tertiary of the London Basin
Huggett, Jennifer, Adetunji, Jacob, Longstaffe, Fred and Wray, David 2017. Mineralogical and geochemical characterisation of warm-water, shallow-marine glaucony from the Tertiary of the London Basin. Clay Minerals. https://doi.org/10.1180/claymin.2017.052.1.02
Archaean chromitites show constant Fe 3+ /ΣFe in Earth's asthenospheric mantle since 3.8 Ga
Rollinson, Hugh, Adetunji, Jacob, Lenaz, Davide and Szilas, Kristoffer 2017. Archaean chromitites show constant Fe 3+ /ΣFe in Earth's asthenospheric mantle since 3.8 Ga. Lithos. https://doi.org/10.1016/j.lithos.2017.03.020
Chromite in the mantle section of the Oman Ophiolite: Implications for the tectonic evolution of the Oman Ophiolite
Rollinson, Hugh and Adetunji, Jacob 2015. Chromite in the mantle section of the Oman Ophiolite: Implications for the tectonic evolution of the Oman Ophiolite. Acta Geologica Sineca. https://doi.org/10.1111/1755-6724.12308_44
There were no large volumes of felsic continental crust in the early Earth
Rollinson, Hugh 2017. There were no large volumes of felsic continental crust in the early Earth. Geosphere. https://doi.org/10.1130/GES01437.1