Species effects on ecosystem processes are modified by faunal responses to habitat composition.
Journal article
Authors | Bulling, Mark T., Solan, Martin, Dyson, Kirstie E., Hernandez-Milian, Gema, Luque, Patricia, Pierce, Graham J., Raffaelli, D., Paterson, David M. and White, Piran C. L. |
---|---|
Abstract | Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations. |
Keywords | Amphipoda; Animals; Behavior, animal; Bivalvia; Ecosystem; Eukaryota; Gastropoda; Geologic sediments; Invertebrates; Polychaeta |
Year | 2008 |
Journal | Oecologia |
ISSN | 0029-8549 |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s00442-008-1160-5 |
Web address (URL) | http://hdl.handle.net/10545/292685 |
hdl:10545/292685 | |
Publication dates | Dec 2008 |
Publication process dates | |
Deposited | 24 May 2013, 08:44 |
Rights | Archived with thanks to Oecologia |
Contributors | University of York, Environment Department |
File | File Access Level Open |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/93269/species-effects-on-ecosystem-processes-are-modified-by-faunal-responses-to-habitat-composition
Download files
60
total views0
total downloads2
views this month0
downloads this month
Export as
Related outputs
Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes
Burian, A., Kremen, C., Shyan-Tau Wu, J., Beckmann, M., Bulling, M., Garibaldi, L., Krisztin, T., Mehrabi, Z., Ramankutty, N. and Seppelt, R. 2024. Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes. Nature Ecology and Evolution. pp. 1-18. https://doi.org/10.1038/s41559-024-02349-0The Effect of Pollen on Coral Health
Barker, T., Bulling, M., Thomas, V. and Sweet, M. 2023. The Effect of Pollen on Coral Health. Biology. 12 (12), pp. 1-12. https://doi.org/10.3390/biology12121469Predation increases multiple components of microbial diversity in activated sludge communities.
Burian, A., Pinn, D., Peralta-Maraver, I., Sweet, M., Mauvisseau, Q., Eyice, O., Bulling, M., Röthig, T. and Kratina, P. 2022. Predation increases multiple components of microbial diversity in activated sludge communities. ISME. 16, p. 1086–1094. https://doi.org/10.1038/s41396-021-01145-zImproving the reliability of eDNA data interpretation
Burian, Alfred, Mauvisseau, Quentin, Bulling, Mark, Domisch, Sami, Qian, Song and Sweet, Michael 2021. Improving the reliability of eDNA data interpretation. Molecular Ecology Resources. 21, p. 1422–1433.. https://doi.org/10.1111/1755-0998.13367Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies
Sweet, Michael, Bulling, Mark, Varshavi, Dorsa, Lloyd, Gavin R., Jankevics, Andris, Najdekr, Lukáš, Weber, Ralf J. M., Viant, Mark R. and Craggs, J. 2021. Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies. Frontiers in Marine Science. 8. https://doi.org/10.3389/fmars.2021.574292Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept
Michael Sweet, Mark Bulling and Burian, A. 2021. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. Elsevier BV. https://doi.org/10.31219/osf.io/gv6s7Improving detection capabilities of a critically endangered freshwater invertebrate with environmental DNA using digital droplet PCR
Mauvisseau, Q., John Davy-Bowker, Mark Bulling, Rein Brys, Sabrina Neyrinck, Christopher Troth and Michael Sweet 2019. Improving detection capabilities of a critically endangered freshwater invertebrate with environmental DNA using digital droplet PCR. https://doi.org/10.1101/661447Untangling the origin of ghost gear within the Maldivian archipelago and its impact on olive ridley (Lepidochelys olivacea) populations
Stelfox, M., Bulling, M and Sweet, M 2019. Untangling the origin of ghost gear within the Maldivian archipelago and its impact on olive ridley (Lepidochelys olivacea) populations. Endangered Species Research. 40, pp. 309-320. https://doi.org/10.3354/esr00990Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease
Sweet, Michael, Burian, Alfred, Fifer, James, Bulling, Mark, Elliott, D. and Raymundo, Laurie 2019. Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease. Microbiome. 7 (1), pp. 1-14. https://doi.org/10.1186/s40168-019-0759-6Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship
Craggs, Jamie, Guest, James, Bulling, Mark and Sweet, Michael 2019. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Scientific Reports. 9 (12984), pp. 1-12. https://doi.org/10.1038/s41598-019-49447-9Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate
Mauvisseau, Quentin, Davy-Bowker, John, Bulling, Mark, Brys, Rein, Neyrinck, Sabrina, Troth, Christopher and Sweet, Michael 2019. Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate. Scientific Reports. 9 (14064), pp. 1-9. https://doi.org/10.1038/s41598-019-50571-9
Post-feeding activity of Lucilia sericata (Diptera: Calliphoridae) on common domestic indoor surfaces and its effect on development.
Robinson, Louise, Bryson, David, Bulling, Mark T., Sparks, N. and Wellard, K. S. 2018. Post-feeding activity of Lucilia sericata (Diptera: Calliphoridae) on common domestic indoor surfaces and its effect on development. Forensic Science International. https://doi.org/10.1016/j.forsciint.2018.03.010
Effects of environmental temperature on oviposition behavior in three blow fly species of forensic importance
Ody, Helen, Bulling, Mark T. and Barnes, Kate M. 2017. Effects of environmental temperature on oviposition behavior in three blow fly species of forensic importance. Forensic Science International. https://doi.org/10.1016/j.forsciint.2017.03.001
Nocturnal oviposition behavior of forensically important Diptera in Central England
Barnes, Kate M., Grace, Karon A. and Bulling, Mark T. 2015. Nocturnal oviposition behavior of forensically important Diptera in Central England. Journal of Forensic Sciences. https://doi.org/10.1111/1556-4029.12841
Microbial effects on the development of forensically important blow fly species
Crooks, Esther R., Bulling, Mark T. and Barnes, Kate M. 2016. Microbial effects on the development of forensically important blow fly species. Forensic Science International. https://doi.org/10.1016/j.forsciint.2016.05.026
Designer reefs and coral probiotics; great concepts but are they good practice?
Sweet, M., Ramsey, A. and Bulling, M. 2017. Designer reefs and coral probiotics; great concepts but are they good practice? Biodiversity. https://doi.org/10.1080/14888386.2017.1307786Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera
Sweet, Michael J., Brown, Barbara E., Dunne, Richard P., Singleton, Ian and Bulling, Mark T. 2017. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs. https://doi.org/10.1007/s00338-017-1572-yOn the importance of the microbiome and pathobiome in coral health and disease
Sweet, M. and Bulling, M. 2017. On the importance of the microbiome and pathobiome in coral health and disease. Frontiers in Marine Sciences. https://doi.org/10.3389/fmars.2017.00009New disease outbreak affects two dominant sea urchin species associated with Australian temperate reefs
Sweet, M. and Bulling, M. 2016. New disease outbreak affects two dominant sea urchin species associated with Australian temperate reefs. Marine Ecological Progress Series. https://doi.org/10.3354/meps11750Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes
Joseph M Cook, Arwyn Edwards, Bulling, M., Luis A J Mur, Sophie Cook, Jarishma K Gokul, Karen A Cameron, Sweet, M. and Tristram D L Irvine-Fynn 2016. Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environmental Microbiology. https://doi.org/10.1111/1462-2920.13349Using model systems to address the biodiversity-ecosystem functioning process
Bulling, Mark T., White, Piran C. L., Raffaelli, D. and Pierce, Graham J. 2013. Using model systems to address the biodiversity-ecosystem functioning process.How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function
Solan, Martin, Batty, P., Bulling, Mark T. and Godbold, J. A. 2013. How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function. Aquatic Biology. https://doi.org/10.3354/ab00058Global patterns of bioturbation intensity and mixed depth of marine soft sediments
Teal, L. R., Bulling, Mark T., Parker, E. R. and Solan, Martin 2013. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology. https://doi.org/10.3354/ab00052Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity
Langenheder, Silke, Bulling, Mark T., Solan, Martin, Prosser, James I. and Bell, Thomas 2013. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLos ONE. https://doi.org/10.1371/journal.pone.0010834Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system
Hicks, Natalie, Bulling, Mark T., Solan, Martin, Raffaelli, D., White, Piran C. L. and Paterson, David M. 2013. Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system. BMC Ecology. https://doi.org/10.1186/1472-6785-11-7
Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity
Langenheder, Silke, Bulling, Mark T., Prosser, James I. and Solan, Martin 2013. Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity. BMC Ecology. https://doi.org/10.1186/1472-6785-12-14
Funding begets biodiversity
Ahrends, Antje, Burgess, Neil D., Gereau, Roy E., Marchant, Rob, Bulling, Mark T., Lovett, Jon C., Platts, Philip J., Kindemba, Victoria Wilkins, Owen, Nisha, Fanning, Eibleis and Rahbek, Carsten 2013. Funding begets biodiversity. Diversity and Distributions. https://doi.org/10.1111/j.1472-4642.2010.00737.x
Conservation and the botanist effect
Ahrends, Antje, Rahbek, Carsten, Bulling, Mark T., Burgess, Neil D., Platts, Philip J., Lovett, Jon C., Kindemba, Victoria Wilkins, Owen, Nisha, Sallu, Albert Ntemi and Marshall, Andrew R. 2013. Conservation and the botanist effect. Biological Conservation. https://doi.org/10.1016/j.biocon.2010.08.008
Habitat structure mediates biodiversity effects on ecosystem properties
Godbold, J. A., Bulling, Mark T. and Solan, Martin 2013. Habitat structure mediates biodiversity effects on ecosystem properties. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2010.2414
Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism
Zetzche, E., Bulling, Mark T. and Witte, U. 2013. Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism.
Modelling the impact of vaccination on tuberculosis in badgers.
Hardstaff, Joanne L., Bulling, Mark T., Marion, Glenn, Hutchings, Michael R. and White, Piran C. L. 2013. Modelling the impact of vaccination on tuberculosis in badgers. Epidemiology and infection. https://doi.org/10.1017/S0950268813000642
Indirect effects of non-lethal predation on bivalve activity and sediment reworking
Maire, O., Merchant, J. N., Bulling, Mark T., Teal, L. R., Grémare, A., Duchêne, J. C. and Solan, Martin 2013. Indirect effects of non-lethal predation on bivalve activity and sediment reworking. Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/j.jembe.2010.08.004
Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city
Ahrends, Antje, Burgess, Neil D., Milledge, Simon A. H., Bulling, Mark T., Fisher, Brendan, Smart, James C. R., Clarke, G. P., Mhoro, Boniface E. and Lewis, Simon L. 2013. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0914471107
Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea.
Vergeer, Philippine, van den Berg, Leon L. J., Bulling, Mark T., Ashmore, Mike R. and Kunin, William E. 2008. Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea. The new phytologist. https://doi.org/10.1111/j.1469-8137.2008.02445.x
Marine biodiversity-ecosystem functions under uncertain environmental futures
Bulling, Mark T., Hicks, Natalie, Murray, L., Paterson, David M., Raffaelli, D., White, Piran C. L. and Solan, Martin 2013. Marine biodiversity-ecosystem functions under uncertain environmental futures. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2010.0022
Influence of macrofaunal assemblages and environmental heterogeneity on microphytobenthic production in experimental systems
Dyson, Kirstie E., Bulling, Mark T., Solan, Martin, Hernandez-Milian, Gema, Raffaelli, D., White, Piran C. L. and Paterson, David M. 2013. Influence of macrofaunal assemblages and environmental heterogeneity on microphytobenthic production in experimental systems. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2007.0922
Quantifying individual feeding variability: implications for mollusc feeding experiments
Hanley, M. E., Bulling, Mark T. and Fenner, M. 2013. Quantifying individual feeding variability: implications for mollusc feeding experiments.