Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity
Journal article
Authors | Langenheder, Silke, Bulling, Mark T., Solan, Martin, Prosser, James I. and Bell, Thomas |
---|---|
Abstract | Background: With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Methodology/Principal Findings: Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Conclusions/Significance: Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning |
Background: | |
Year | 2013 |
Journal | PLos ONE |
ISSN | 1932-6203 |
Digital Object Identifier (DOI) | https://doi.org/10.1371/journal.pone.0010834 |
Web address (URL) | http://hdl.handle.net/10545/292737 |
hdl:10545/292737 | |
Publication dates | 24 May 2013 |
Publication process dates | |
Deposited | 24 May 2013, 14:21 |
Rights | Archived with thanks to PLoS ONE |
File | File Access Level Open |
File | File Access Level Open |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/951y1/bacterial-biodiversity-ecosystem-functioning-relations-are-modified-by-environmental-complexity
Download files
45
total views9
total downloads1
views this month0
downloads this month
Export as
Related outputs
Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes
Burian, A., Kremen, C., Shyan-Tau Wu, J., Beckmann, M., Bulling, M., Garibaldi, L., Krisztin, T., Mehrabi, Z., Ramankutty, N. and Seppelt, R. 2024. Biodiversity–production feedback effects lead to intensification traps in agricultural landscapes. Nature Ecology and Evolution. pp. 1-18. https://doi.org/10.1038/s41559-024-02349-0The Effect of Pollen on Coral Health
Barker, T., Bulling, M., Thomas, V. and Sweet, M. 2023. The Effect of Pollen on Coral Health. Biology. 12 (12), pp. 1-12. https://doi.org/10.3390/biology12121469Predation increases multiple components of microbial diversity in activated sludge communities.
Burian, A., Pinn, D., Peralta-Maraver, I., Sweet, M., Mauvisseau, Q., Eyice, O., Bulling, M., Röthig, T. and Kratina, P. 2022. Predation increases multiple components of microbial diversity in activated sludge communities. ISME. 16, p. 1086–1094. https://doi.org/10.1038/s41396-021-01145-zImproving the reliability of eDNA data interpretation
Burian, Alfred, Mauvisseau, Quentin, Bulling, Mark, Domisch, Sami, Qian, Song and Sweet, Michael 2021. Improving the reliability of eDNA data interpretation. Molecular Ecology Resources. 21, p. 1422–1433.. https://doi.org/10.1111/1755-0998.13367Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies
Sweet, Michael, Bulling, Mark, Varshavi, Dorsa, Lloyd, Gavin R., Jankevics, Andris, Najdekr, Lukáš, Weber, Ralf J. M., Viant, Mark R. and Craggs, J. 2021. Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies. Frontiers in Marine Science. 8. https://doi.org/10.3389/fmars.2021.574292Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept
Michael Sweet, Mark Bulling and Burian, A. 2021. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. Elsevier BV. https://doi.org/10.31219/osf.io/gv6s7Improving detection capabilities of a critically endangered freshwater invertebrate with environmental DNA using digital droplet PCR
Mauvisseau, Q., John Davy-Bowker, Mark Bulling, Rein Brys, Sabrina Neyrinck, Christopher Troth and Michael Sweet 2019. Improving detection capabilities of a critically endangered freshwater invertebrate with environmental DNA using digital droplet PCR. https://doi.org/10.1101/661447Untangling the origin of ghost gear within the Maldivian archipelago and its impact on olive ridley (Lepidochelys olivacea) populations
Stelfox, M., Bulling, M and Sweet, M 2019. Untangling the origin of ghost gear within the Maldivian archipelago and its impact on olive ridley (Lepidochelys olivacea) populations. Endangered Species Research. 40, pp. 309-320. https://doi.org/10.3354/esr00990Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease
Sweet, Michael, Burian, Alfred, Fifer, James, Bulling, Mark, Elliott, D. and Raymundo, Laurie 2019. Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease. Microbiome. 7 (1), pp. 1-14. https://doi.org/10.1186/s40168-019-0759-6Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship
Craggs, Jamie, Guest, James, Bulling, Mark and Sweet, Michael 2019. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Scientific Reports. 9 (12984), pp. 1-12. https://doi.org/10.1038/s41598-019-49447-9Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate
Mauvisseau, Quentin, Davy-Bowker, John, Bulling, Mark, Brys, Rein, Neyrinck, Sabrina, Troth, Christopher and Sweet, Michael 2019. Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate. Scientific Reports. 9 (14064), pp. 1-9. https://doi.org/10.1038/s41598-019-50571-9
Post-feeding activity of Lucilia sericata (Diptera: Calliphoridae) on common domestic indoor surfaces and its effect on development.
Robinson, Louise, Bryson, David, Bulling, Mark T., Sparks, N. and Wellard, K. S. 2018. Post-feeding activity of Lucilia sericata (Diptera: Calliphoridae) on common domestic indoor surfaces and its effect on development. Forensic Science International. https://doi.org/10.1016/j.forsciint.2018.03.010
Effects of environmental temperature on oviposition behavior in three blow fly species of forensic importance
Ody, Helen, Bulling, Mark T. and Barnes, Kate M. 2017. Effects of environmental temperature on oviposition behavior in three blow fly species of forensic importance. Forensic Science International. https://doi.org/10.1016/j.forsciint.2017.03.001
Nocturnal oviposition behavior of forensically important Diptera in Central England
Barnes, Kate M., Grace, Karon A. and Bulling, Mark T. 2015. Nocturnal oviposition behavior of forensically important Diptera in Central England. Journal of Forensic Sciences. https://doi.org/10.1111/1556-4029.12841
Microbial effects on the development of forensically important blow fly species
Crooks, Esther R., Bulling, Mark T. and Barnes, Kate M. 2016. Microbial effects on the development of forensically important blow fly species. Forensic Science International. https://doi.org/10.1016/j.forsciint.2016.05.026
Designer reefs and coral probiotics; great concepts but are they good practice?
Sweet, M., Ramsey, A. and Bulling, M. 2017. Designer reefs and coral probiotics; great concepts but are they good practice? Biodiversity. https://doi.org/10.1080/14888386.2017.1307786Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera
Sweet, Michael J., Brown, Barbara E., Dunne, Richard P., Singleton, Ian and Bulling, Mark T. 2017. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs. https://doi.org/10.1007/s00338-017-1572-yOn the importance of the microbiome and pathobiome in coral health and disease
Sweet, M. and Bulling, M. 2017. On the importance of the microbiome and pathobiome in coral health and disease. Frontiers in Marine Sciences. https://doi.org/10.3389/fmars.2017.00009New disease outbreak affects two dominant sea urchin species associated with Australian temperate reefs
Sweet, M. and Bulling, M. 2016. New disease outbreak affects two dominant sea urchin species associated with Australian temperate reefs. Marine Ecological Progress Series. https://doi.org/10.3354/meps11750Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes
Joseph M Cook, Arwyn Edwards, Bulling, M., Luis A J Mur, Sophie Cook, Jarishma K Gokul, Karen A Cameron, Sweet, M. and Tristram D L Irvine-Fynn 2016. Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environmental Microbiology. https://doi.org/10.1111/1462-2920.13349Using model systems to address the biodiversity-ecosystem functioning process
Bulling, Mark T., White, Piran C. L., Raffaelli, D. and Pierce, Graham J. 2013. Using model systems to address the biodiversity-ecosystem functioning process.How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function
Solan, Martin, Batty, P., Bulling, Mark T. and Godbold, J. A. 2013. How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function. Aquatic Biology. https://doi.org/10.3354/ab00058Global patterns of bioturbation intensity and mixed depth of marine soft sediments
Teal, L. R., Bulling, Mark T., Parker, E. R. and Solan, Martin 2013. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology. https://doi.org/10.3354/ab00052Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system
Hicks, Natalie, Bulling, Mark T., Solan, Martin, Raffaelli, D., White, Piran C. L. and Paterson, David M. 2013. Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system. BMC Ecology. https://doi.org/10.1186/1472-6785-11-7
Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity
Langenheder, Silke, Bulling, Mark T., Prosser, James I. and Solan, Martin 2013. Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity. BMC Ecology. https://doi.org/10.1186/1472-6785-12-14
Funding begets biodiversity
Ahrends, Antje, Burgess, Neil D., Gereau, Roy E., Marchant, Rob, Bulling, Mark T., Lovett, Jon C., Platts, Philip J., Kindemba, Victoria Wilkins, Owen, Nisha, Fanning, Eibleis and Rahbek, Carsten 2013. Funding begets biodiversity. Diversity and Distributions. https://doi.org/10.1111/j.1472-4642.2010.00737.x
Conservation and the botanist effect
Ahrends, Antje, Rahbek, Carsten, Bulling, Mark T., Burgess, Neil D., Platts, Philip J., Lovett, Jon C., Kindemba, Victoria Wilkins, Owen, Nisha, Sallu, Albert Ntemi and Marshall, Andrew R. 2013. Conservation and the botanist effect. Biological Conservation. https://doi.org/10.1016/j.biocon.2010.08.008
Habitat structure mediates biodiversity effects on ecosystem properties
Godbold, J. A., Bulling, Mark T. and Solan, Martin 2013. Habitat structure mediates biodiversity effects on ecosystem properties. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2010.2414
Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism
Zetzche, E., Bulling, Mark T. and Witte, U. 2013. Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism.
Modelling the impact of vaccination on tuberculosis in badgers.
Hardstaff, Joanne L., Bulling, Mark T., Marion, Glenn, Hutchings, Michael R. and White, Piran C. L. 2013. Modelling the impact of vaccination on tuberculosis in badgers. Epidemiology and infection. https://doi.org/10.1017/S0950268813000642
Indirect effects of non-lethal predation on bivalve activity and sediment reworking
Maire, O., Merchant, J. N., Bulling, Mark T., Teal, L. R., Grémare, A., Duchêne, J. C. and Solan, Martin 2013. Indirect effects of non-lethal predation on bivalve activity and sediment reworking. Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/j.jembe.2010.08.004
Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city
Ahrends, Antje, Burgess, Neil D., Milledge, Simon A. H., Bulling, Mark T., Fisher, Brendan, Smart, James C. R., Clarke, G. P., Mhoro, Boniface E. and Lewis, Simon L. 2013. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0914471107
Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea.
Vergeer, Philippine, van den Berg, Leon L. J., Bulling, Mark T., Ashmore, Mike R. and Kunin, William E. 2008. Geographical variation in the response to nitrogen deposition in Arabidopsis lyrata petraea. The new phytologist. https://doi.org/10.1111/j.1469-8137.2008.02445.x
Marine biodiversity-ecosystem functions under uncertain environmental futures
Bulling, Mark T., Hicks, Natalie, Murray, L., Paterson, David M., Raffaelli, D., White, Piran C. L. and Solan, Martin 2013. Marine biodiversity-ecosystem functions under uncertain environmental futures. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2010.0022
Species effects on ecosystem processes are modified by faunal responses to habitat composition.
Bulling, Mark T., Solan, Martin, Dyson, Kirstie E., Hernandez-Milian, Gema, Luque, Patricia, Pierce, Graham J., Raffaelli, D., Paterson, David M. and White, Piran C. L. 2008. Species effects on ecosystem processes are modified by faunal responses to habitat composition. Oecologia. https://doi.org/10.1007/s00442-008-1160-5
Influence of macrofaunal assemblages and environmental heterogeneity on microphytobenthic production in experimental systems
Dyson, Kirstie E., Bulling, Mark T., Solan, Martin, Hernandez-Milian, Gema, Raffaelli, D., White, Piran C. L. and Paterson, David M. 2013. Influence of macrofaunal assemblages and environmental heterogeneity on microphytobenthic production in experimental systems. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2007.0922
Quantifying individual feeding variability: implications for mollusc feeding experiments
Hanley, M. E., Bulling, Mark T. and Fenner, M. 2013. Quantifying individual feeding variability: implications for mollusc feeding experiments.