Time-dependent measurements of length and area of the contact line in contact-boiling regime

Journal article


Mohammad Khavari and Tuan Tran 2021. Time-dependent measurements of length and area of the contact line in contact-boiling regime. Journal of Fluid Mechanics. 926, pp. 1-8. https://doi.org/10.1017/jfm.2021.745
AuthorsMohammad Khavari and Tuan Tran
Abstract

During the impact of a liquid droplet on a sufficiently heated surface, bubble nucleation reduces the contact area between the liquid and the solid surface. Using high-speed imaging combined with total internal reflection, we measure and report how the contact area decreases with time for a wide range of surface temperatures and impact velocities. We also reveal how formation of the observed fingering patterns contributes to a substantial increase in the total length of the contact line surrounding the contact area.

Keywordsdrops and bubbles: boiling; drops and bubbles: drops; drops and bubbles: bubble dynamics
Year2021
JournalJournal of Fluid Mechanics
Journal citation926, pp. 1-8
PublisherCambridge University Press
ISSN1469-7645
Digital Object Identifier (DOI)https://doi.org/10.1017/jfm.2021.745
Web address (URL)https://doi.org/10.1017/jfm.2021.745
Output statusPublished
Publication dates10 Sep 2021
Publication process dates
Accepted2021
Deposited30 Nov 2022
Permalink -

https://repository.derby.ac.uk/item/9v9v3/time-dependent-measurements-of-length-and-area-of-the-contact-line-in-contact-boiling-regime

  • 111
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Cavitation-induced shock wave behaviour in different liquids
Khavari, M., Priyadarshi, A., Morton, J., Porfyrakis, K., Pericleous, K., Eskin, D. and Tzanakis, T. 2023. Cavitation-induced shock wave behaviour in different liquids. Ultrasonics Sonochemistry. 94, pp. 1-11. https://doi.org/10.1016/j.ultsonch.2023.106328
Dual frequency ultrasonic cavitation in various liquids: High-speed imaging and acoustic pressure measurements
Justin A. Morton, Mohammad Khavari, Abhinav Priyadarshi, Amanpreet Kaur, Nicole Grobert, Jiawei Mi, Kyriakos Porfyrakis, Paul Prentice, Dmitry G. Eskin and Iakovos Tzanakis 2023. Dual frequency ultrasonic cavitation in various liquids: High-speed imaging and acoustic pressure measurements. Physics of Fluids. 35, pp. 1-13. https://doi.org/10.1063/5.0136469
An eco-friendly solution for liquid phase exfoliation of graphite
Morton, J. A., Kaur, A., Khavari, M., Tyurnina, A. V., Priyadarshi, A., Eskin, D. G., Mi, J., Porfyrakis, K., Prentice, P. and Tzanakis, I. 2023. An eco-friendly solution for liquid phase exfoliation of graphite. Carbon. 204, pp. 434-446. https://doi.org/10.1016/j.carbon.2022.12.070
In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water
Khavari, M., Priyadarshi, A., Shahrani, S. B., Subroto, T., Yusuf, L. A., Conte, M., prentice, P., Pericleous, K., Eskin, D. and Tzanakis, I. 2021. In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water. Ultrasonics Sonochemistry . 80, pp. 1-14. https://doi.org/10.1016/j.ultsonch.2021.105820
Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements
Priyadarshi, A., Khavari, M., Subroto, T., Prentice, P., Pericleous, K., Eskin, D., Durodola, J. and Tzanakis, I. 2021. Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements. Ultrasonics Sonochemistry. 79, pp. 1-12. https://doi.org/10.1016/j.ultsonch.2021.105792
Cavitation in thermoplastic melts: New insights into ultrasound-assisted fibre-impregnation
Iakovos Tzanakis, Mohammad Khavari, Maik Titze and Dmitry G. Eskin 2021. Cavitation in thermoplastic melts: New insights into ultrasound-assisted fibre-impregnation. Composites Part B: Engineering. 229, pp. 1-8. https://doi.org/10.1016/j.compositesb.2021.109480
Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene
Anastasia V. Tyurnina, Justin A. Morton, Tungky Subroto, Mohammad Khavari, Barbara Maciejewska, Jiawei Mi, Nicole Grobert, Kyriakos Porfyrakis, Iakovos Tzanakis and Dmitry G. Eskin 2021. Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene. Carbon. 185, pp. 536-545. https://doi.org/10.1016/j.carbon.2021.09.036
Scale Up Design Study on Process Vessel Dimensions for Ultrasonic Processing of Water and Liquid Aluminium
Khavari, M. 2021. Scale Up Design Study on Process Vessel Dimensions for Ultrasonic Processing of Water and Liquid Aluminium. Ultrasonics Sonochemistry. 76, pp. 1-13. https://doi.org/10.1016/j.ultsonch.2021.105647
New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements
Justin A. Morton, Mohammad Khavari, Ling Qin, Barbara M. Maciejewska, Anastasia V. Tyurnina, Nicole Grobert, Dmitry G. Eskin, Jiawei Mi, Kyriakos Porfyrakis, Paul Prentice and Iakovos Tzanakis 2021. New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements. Materials Today. 49, pp. 10-22. https://doi.org/10.1016/j.mattod.2021.05.005
On the governing fragmentation mechanism of primary intermetallics by induced cavitation
Priyadarshi, A., Khavari, M., Subroto, T., Conte, M., Prentice, P., Pericleous, K., Eskin, D., Durodola, J. and Tzanakis, I. 2021. On the governing fragmentation mechanism of primary intermetallics by induced cavitation. Ultrasonics Sonochemistry. 70, pp. 1-16. https://doi.org/10.1016/j.ultsonch.2020.105260
Characterization of shock waves in power ultrasound
Khavari, M., Priyadarshi, A., Hurrell, A., Pericleous, K., Eskin, D. and Tzanakis, I. 2021. Characterization of shock waves in power ultrasound. Journal of Fluid Mechanics. 915, pp. 1-14. https://doi.org/10.1017/jfm.2021.186
Universality of oscillating boiling in Leidenfrost transition
Khavari, M. and Tran, T. 2017. Universality of oscillating boiling in Leidenfrost transition. Physical Review E. pp. 1-5. https://doi.org/10.1103/physreve.96.043102
Fingering patterns during droplet impact on heated surfaces
Khavari, M., Sun, C., Lohse, D. and Tran, T. 2015. Fingering patterns during droplet impact on heated surfaces. Soft Matter. 11, pp. 3298-3303. https://doi.org/10.1039/c4sm02878c