Cavitation-induced shock wave behaviour in different liquids

Journal article


Khavari, M., Priyadarshi, A., Morton, J., Porfyrakis, K., Pericleous, K., Eskin, D. and Tzanakis, T. 2023. Cavitation-induced shock wave behaviour in different liquids. Ultrasonics Sonochemistry. 94, pp. 1-11. https://doi.org/10.1016/j.ultsonch.2023.106328
AuthorsKhavari, M., Priyadarshi, A., Morton, J., Porfyrakis, K., Pericleous, K., Eskin, D. and Tzanakis, T.
Abstract

This paper follows our earlier work where a strong high frequency pressure peak has been observed as a consequence of the formation of shock waves due to the collapse of cavitation bubbles in water, excited by an ultrasonic source at 24 kHz. We study here the effects of liquid physical properties on the shock wave characteristics by replacing water as the medium successively with ethanol, glycerol and finally a 1:1 ethanol–water solution. The pressure frequency spectra obtained in our experiments (from more than 1.5 million cavitation collapsing events) show that the expected prominent shockwave pressure peak was barely detected for ethanol and glycerol, particularly at low input powers, but was consistently observed for the 1:1 ethanol–water solution as well as in water, with a slight shift in peak frequency for the solution. We also report two distinct features of shock waves in raising the frequency peak at MHz (inherent) and contributing to the raising of sub-harmonics (periodic). Empirically constructed acoustic pressure maps revealed significantly higher overall pressure amplitudes for the ethanol–water solution than for other liquids. Furthermore, a qualitative analysis revealed that mist-like patterns are developed in ethanol–water solution leading to higher pressures.

KeywordsUltrasonic; cavitation Shock ; sub-harmonics
Year2023
JournalUltrasonics Sonochemistry
Journal citation94, pp. 1-11
PublisherElsevier
ISSN1350-4177
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ultsonch.2023.106328
Web address (URL)https://www.sciencedirect.com/science/article/pii/S1350417723000408
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online14 Feb 2023
Publication process dates
Accepted09 Feb 2023
Deposited26 Apr 2023
Permalink -

https://repository.derby.ac.uk/item/9x2zq/cavitation-induced-shock-wave-behaviour-in-different-liquids

Download files


Publisher's version
Cavitation_2023.pdf
License: CC BY 4.0
File access level: Open

  • 31
    total views
  • 16
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Dual frequency ultrasonic cavitation in various liquids: High-speed imaging and acoustic pressure measurements
Justin A. Morton, Mohammad Khavari, Abhinav Priyadarshi, Amanpreet Kaur, Nicole Grobert, Jiawei Mi, Kyriakos Porfyrakis, Paul Prentice, Dmitry G. Eskin and Iakovos Tzanakis 2023. Dual frequency ultrasonic cavitation in various liquids: High-speed imaging and acoustic pressure measurements. Physics of Fluids. 35, pp. 1-13. https://doi.org/10.1063/5.0136469
An eco-friendly solution for liquid phase exfoliation of graphite
Morton, J. A., Kaur, A., Khavari, M., Tyurnina, A. V., Priyadarshi, A., Eskin, D. G., Mi, J., Porfyrakis, K., Prentice, P. and Tzanakis, I. 2023. An eco-friendly solution for liquid phase exfoliation of graphite. Carbon. 204, pp. 434-446. https://doi.org/10.1016/j.carbon.2022.12.070
In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water
Khavari, M., Priyadarshi, A., Shahrani, S. B., Subroto, T., Yusuf, L. A., Conte, M., prentice, P., Pericleous, K., Eskin, D. and Tzanakis, I. 2021. In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water. Ultrasonics Sonochemistry . 80, pp. 1-14. https://doi.org/10.1016/j.ultsonch.2021.105820
Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements
Priyadarshi, A., Khavari, M., Subroto, T., Prentice, P., Pericleous, K., Eskin, D., Durodola, J. and Tzanakis, I. 2021. Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements. Ultrasonics Sonochemistry. 79, pp. 1-12. https://doi.org/10.1016/j.ultsonch.2021.105792
Cavitation in thermoplastic melts: New insights into ultrasound-assisted fibre-impregnation
Iakovos Tzanakis, Mohammad Khavari, Maik Titze and Dmitry G. Eskin 2021. Cavitation in thermoplastic melts: New insights into ultrasound-assisted fibre-impregnation. Composites Part B: Engineering. 229, pp. 1-8. https://doi.org/10.1016/j.compositesb.2021.109480
Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene
Anastasia V. Tyurnina, Justin A. Morton, Tungky Subroto, Mohammad Khavari, Barbara Maciejewska, Jiawei Mi, Nicole Grobert, Kyriakos Porfyrakis, Iakovos Tzanakis and Dmitry G. Eskin 2021. Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene. Carbon. 185, pp. 536-545. https://doi.org/10.1016/j.carbon.2021.09.036
Time-dependent measurements of length and area of the contact line in contact-boiling regime
Mohammad Khavari and Tuan Tran 2021. Time-dependent measurements of length and area of the contact line in contact-boiling regime. Journal of Fluid Mechanics. 926, pp. 1-8. https://doi.org/10.1017/jfm.2021.745
Scale Up Design Study on Process Vessel Dimensions for Ultrasonic Processing of Water and Liquid Aluminium
Khavari, M. 2021. Scale Up Design Study on Process Vessel Dimensions for Ultrasonic Processing of Water and Liquid Aluminium. Ultrasonics Sonochemistry. 76, pp. 1-13. https://doi.org/10.1016/j.ultsonch.2021.105647
New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements
Justin A. Morton, Mohammad Khavari, Ling Qin, Barbara M. Maciejewska, Anastasia V. Tyurnina, Nicole Grobert, Dmitry G. Eskin, Jiawei Mi, Kyriakos Porfyrakis, Paul Prentice and Iakovos Tzanakis 2021. New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements. Materials Today. 49, pp. 10-22. https://doi.org/10.1016/j.mattod.2021.05.005
On the governing fragmentation mechanism of primary intermetallics by induced cavitation
Priyadarshi, A., Khavari, M., Subroto, T., Conte, M., Prentice, P., Pericleous, K., Eskin, D., Durodola, J. and Tzanakis, I. 2021. On the governing fragmentation mechanism of primary intermetallics by induced cavitation. Ultrasonics Sonochemistry. 70, pp. 1-16. https://doi.org/10.1016/j.ultsonch.2020.105260
Characterization of shock waves in power ultrasound
Khavari, M., Priyadarshi, A., Hurrell, A., Pericleous, K., Eskin, D. and Tzanakis, I. 2021. Characterization of shock waves in power ultrasound. Journal of Fluid Mechanics. 915, pp. 1-14. https://doi.org/10.1017/jfm.2021.186
Universality of oscillating boiling in Leidenfrost transition
Khavari, M. and Tran, T. 2017. Universality of oscillating boiling in Leidenfrost transition. Physical Review E. pp. 1-5. https://doi.org/10.1103/physreve.96.043102
Fingering patterns during droplet impact on heated surfaces
Khavari, M., Sun, C., Lohse, D. and Tran, T. 2015. Fingering patterns during droplet impact on heated surfaces. Soft Matter. 11, pp. 3298-3303. https://doi.org/10.1039/c4sm02878c