Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements

Journal article


Priyadarshi, A., Khavari, M., Subroto, T., Prentice, P., Pericleous, K., Eskin, D., Durodola, J. and Tzanakis, I. 2021. Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and acoustic measurements. Ultrasonics Sonochemistry. 79, pp. 1-12. https://doi.org/10.1016/j.ultsonch.2021.105792
AuthorsPriyadarshi, A., Khavari, M., Subroto, T., Prentice, P., Pericleous, K., Eskin, D., Durodola, J. and Tzanakis, I.
Abstract

Ultrasonic de-agglomeration and dispersion of oxides is important for a range of applications. In particular, in liquid metal, this is one of the ways to produce metal-matrix composites reinforced with micron and nano sized particles. The associated mechanism through which the de-agglomeration occurs has, however, only been conceptualized theoretically and not yet been validated with experimental observations. In this paper, the influence of ultrasonic cavitation on SiO2 and MgO agglomerates (commonly found in lightweight alloys as reinforcements) with individual particle sizes ranging between 0.5 and 10 μm was observed for the first time in-situ using high-speed imaging. Owing to the opacity of liquid metals, a de-agglomeration imaging experiment was carried out in de-ionised water with sequences captured at frame rates up to 50 kfps. In-situ observations were further accompanied by synchronised acoustic measurements using an advanced calibrated cavitometer, to reveal the effect of pressure amplitude arising from oscillating microbubbles on oxide de-agglomeration. Results showed that ultrasound-induced microbubble clusters pulsating chaotically, were predominantly responsible for the breakage and dispersion of oxide agglomerates. Such oscillating cavitation clusters were seen to capture the floating agglomerates resulting in their immediate disintegration. De-agglomeration of oxides occurred from both the surface and within the bulk of the aggregate. Microbubble clusters oscillating with associated emission frequencies at the subharmonic, 1st harmonic and low order ultra-harmonics of the driving frequency were deemed responsible for the breakage of the agglomerates.

KeywordsDe-agglomeration; Dispersion; Oxides; Microbubble; High-speed imaging
Year2021
JournalUltrasonics Sonochemistry
Journal citation79, pp. 1-12
PublisherElsevier
ISSN1350-4177
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ultsonch.2021.105792
Web address (URL)http://dx.doi.org/10.1016/j.ultsonch.2021.105792
Output statusPublished
Publication dates15 Oct 2021
Publication process dates
Accepted12 Oct 2021
Deposited30 Nov 2022
Permalink -

https://repository.derby.ac.uk/item/9v9w3/mechanisms-of-ultrasonic-de-agglomeration-of-oxides-through-in-situ-high-speed-observations-and-acoustic-measurements

  • 35
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Cavitation-induced shock wave behaviour in different liquids
Khavari, M., Priyadarshi, A., Morton, J., Porfyrakis, K., Pericleous, K., Eskin, D. and Tzanakis, T. 2023. Cavitation-induced shock wave behaviour in different liquids. Ultrasonics Sonochemistry. 94, pp. 1-11. https://doi.org/10.1016/j.ultsonch.2023.106328
Dual frequency ultrasonic cavitation in various liquids: High-speed imaging and acoustic pressure measurements
Justin A. Morton, Mohammad Khavari, Abhinav Priyadarshi, Amanpreet Kaur, Nicole Grobert, Jiawei Mi, Kyriakos Porfyrakis, Paul Prentice, Dmitry G. Eskin and Iakovos Tzanakis 2023. Dual frequency ultrasonic cavitation in various liquids: High-speed imaging and acoustic pressure measurements. Physics of Fluids. 35, pp. 1-13. https://doi.org/10.1063/5.0136469
An eco-friendly solution for liquid phase exfoliation of graphite
Morton, J. A., Kaur, A., Khavari, M., Tyurnina, A. V., Priyadarshi, A., Eskin, D. G., Mi, J., Porfyrakis, K., Prentice, P. and Tzanakis, I. 2023. An eco-friendly solution for liquid phase exfoliation of graphite. Carbon. 204, pp. 434-446. https://doi.org/10.1016/j.carbon.2022.12.070
In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water
Khavari, M., Priyadarshi, A., Shahrani, S. B., Subroto, T., Yusuf, L. A., Conte, M., prentice, P., Pericleous, K., Eskin, D. and Tzanakis, I. 2021. In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water. Ultrasonics Sonochemistry . 80, pp. 1-14. https://doi.org/10.1016/j.ultsonch.2021.105820
Cavitation in thermoplastic melts: New insights into ultrasound-assisted fibre-impregnation
Iakovos Tzanakis, Mohammad Khavari, Maik Titze and Dmitry G. Eskin 2021. Cavitation in thermoplastic melts: New insights into ultrasound-assisted fibre-impregnation. Composites Part B: Engineering. 229, pp. 1-8. https://doi.org/10.1016/j.compositesb.2021.109480
Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene
Anastasia V. Tyurnina, Justin A. Morton, Tungky Subroto, Mohammad Khavari, Barbara Maciejewska, Jiawei Mi, Nicole Grobert, Kyriakos Porfyrakis, Iakovos Tzanakis and Dmitry G. Eskin 2021. Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene. Carbon. 185, pp. 536-545. https://doi.org/10.1016/j.carbon.2021.09.036
Time-dependent measurements of length and area of the contact line in contact-boiling regime
Mohammad Khavari and Tuan Tran 2021. Time-dependent measurements of length and area of the contact line in contact-boiling regime. Journal of Fluid Mechanics. 926, pp. 1-8. https://doi.org/10.1017/jfm.2021.745
Scale Up Design Study on Process Vessel Dimensions for Ultrasonic Processing of Water and Liquid Aluminium
Khavari, M. 2021. Scale Up Design Study on Process Vessel Dimensions for Ultrasonic Processing of Water and Liquid Aluminium. Ultrasonics Sonochemistry. 76, pp. 1-13. https://doi.org/10.1016/j.ultsonch.2021.105647
New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements
Justin A. Morton, Mohammad Khavari, Ling Qin, Barbara M. Maciejewska, Anastasia V. Tyurnina, Nicole Grobert, Dmitry G. Eskin, Jiawei Mi, Kyriakos Porfyrakis, Paul Prentice and Iakovos Tzanakis 2021. New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements. Materials Today. 49, pp. 10-22. https://doi.org/10.1016/j.mattod.2021.05.005
On the governing fragmentation mechanism of primary intermetallics by induced cavitation
Priyadarshi, A., Khavari, M., Subroto, T., Conte, M., Prentice, P., Pericleous, K., Eskin, D., Durodola, J. and Tzanakis, I. 2021. On the governing fragmentation mechanism of primary intermetallics by induced cavitation. Ultrasonics Sonochemistry. 70, pp. 1-16. https://doi.org/10.1016/j.ultsonch.2020.105260
Characterization of shock waves in power ultrasound
Khavari, M., Priyadarshi, A., Hurrell, A., Pericleous, K., Eskin, D. and Tzanakis, I. 2021. Characterization of shock waves in power ultrasound. Journal of Fluid Mechanics. 915, pp. 1-14. https://doi.org/10.1017/jfm.2021.186
Universality of oscillating boiling in Leidenfrost transition
Khavari, M. and Tran, T. 2017. Universality of oscillating boiling in Leidenfrost transition. Physical Review E. pp. 1-5. https://doi.org/10.1103/physreve.96.043102
Fingering patterns during droplet impact on heated surfaces
Khavari, M., Sun, C., Lohse, D. and Tran, T. 2015. Fingering patterns during droplet impact on heated surfaces. Soft Matter. 11, pp. 3298-3303. https://doi.org/10.1039/c4sm02878c