Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin
Journal article
Authors | Martin, Christine M., Parthsarathy, Vadivel, Hasib, Annie, NG, Ming T., McClean, Stephen, Flatt, Peter R., Gault, Victor A. and Irwin, Nigel |
---|---|
Abstract | Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18-25 and xenin 18-25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18-25 and xenin 18-25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18-25 or xenin 18-25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18-25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18-25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18-25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18-25 Gln, have potential therapeutic utility for type 2 diabetes. |
Keywords | diabetes; antihyperglycaemic; peptide fragments |
Year | 2016 |
Journal | PLos ONE |
Journal citation | 11 (3) |
Publisher | Public Library of Science (PLoS) |
ISSN | 1932-6203 |
Digital Object Identifier (DOI) | https://doi.org/10.1371/journal.pone.0152818 |
Web address (URL) | http://hdl.handle.net/10545/622907 |
hdl:10545/622907 | |
http://europepmc.org/article/med/27032106 | |
Output status | Published |
Publication dates | 31 Mar 2016 |
Publication process dates | |
Deposited | 16 Aug 2018 |
https://repository.derby.ac.uk/item/932yw/biological-activity-and-antidiabetic-potential-of-c-terminal-octapeptide-fragments-of-the-gut-derived-hormone-xenin
31
total views0
total downloads1
views this month0
downloads this month
Export as
Related outputs
Peptide Co-Agonists for Combined Activation of the APJ and GLP-1 Receptors with Insulinotropic and Satiety Actions Show Potential for Alleviation of Metabolic Dysfunction in Type 2 Diabetes †
O' Harte, S., Parthsarathy, V., Craig, S., Palmer, E. and Irwin, N. 2023. Peptide Co-Agonists for Combined Activation of the APJ and GLP-1 Receptors with Insulinotropic and Satiety Actions Show Potential for Alleviation of Metabolic Dysfunction in Type 2 Diabetes †. 1st International Meeting Molecules 4 Life. MDPI. https://doi.org/10.3390/msf2023023001Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca PPP3/calcineurin-TFEB axis
Zummo, F.P, Krishnanda, S.I, Georgiou, M., O’Harte, F. P. M., Parthsarathy, V., Cullen, K.S, Honkanen-Scott, M, Shaw, J.A.M, Lovat, P.E and Arden, C 2021. Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca PPP3/calcineurin-TFEB axis. Autophagy. 18 (4), pp. 1-17. https://doi.org/10.1080/15548627.2021.1956123Protein hydrolysates from boarfish (Capros aper) and Atlantic salmon (Salmo salar) skin gelatin improve metabolic control in genetically obese diabetic (ob/ob) mice
Parthsarathy, V., McLaughlin, C.M, Sharkey, S.J, Harnedy-Rothwell, P.A, Lafferty, R.A, Allsopp, P.J, McSorley, E.M, Fitzgerald, R.J and O'Harte, F.P.M 2021. Protein hydrolysates from boarfish (Capros aper) and Atlantic salmon (Salmo salar) skin gelatin improve metabolic control in genetically obese diabetic (ob/ob) mice. Journal of Food Bioactives. 16, pp. 48-57. https://doi.org/10.31665/JFB.2021.16292Stability to thermal treatment of dipeptidyl peptidase‐IV inhibitory activity of a boarfish (Capros aper) protein hydrolysate when incorporated into tomato‐based products
Harnedy‐Rothwell, P.A., McLaughlin, C.M., Crowe, W., Allsopp, P.J., McSorley, E.M., Devaney, M., Whooley, J., McGovern, B., Parthsarathy, V., O'Harte, F.P.M. and FitzGerald, R.J. 2021. Stability to thermal treatment of dipeptidyl peptidase‐IV inhibitory activity of a boarfish (Capros aper) protein hydrolysate when incorporated into tomato‐based products. International Journal of Food Science and Technology. 56 (1), pp. 158-165. https://doi.org/10.1111/ijfs.14615Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion
McLaughlin, C.M., Harnedy-Rothwell, P.A., Lafferty, R.A., Sharkey, S., Parthsarathy, V., Allsopp, P.J., McSorley, E.M., FitzGerald, R.J. and O'Harte, F.P.M. 2021. Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion. European Journal of Nutrition. 60 (8), pp. 4439-4452. https://doi.org/10.1007/s00394-021-02583-3
Chronic apelin analogue administration is more effective than established incretin therapies for alleviating metabolic dysfunction in diabetic db/db mice
O'Harte, Finbarr P M, Parthsarathy, Vadivel and Flatt, Peter R 2020. Chronic apelin analogue administration is more effective than established incretin therapies for alleviating metabolic dysfunction in diabetic db/db mice. Molecular and cellular endocrinology. 504, p. 110695. https://doi.org/10.1016/j.mce.2019.110695Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice.
Parthsarathy, Vadivel, Hogg, Christopher, Flatt, Peter R. and O'Harte, Finbarr P. M. 2017. Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice. Diabetes Obesity and Metabolism. https://doi.org/10.1111/dom.13068Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice
Millar, Paul, Pathak, Nupur, Parthsarathy, Vadivel, Bjourson, Anthony J., O'Kane, Maurice, Pathak, Varun, Moffett, Charlotte, Flatt, Peter R. and Gault, Victor A. 2017. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. Journal of Endocrinology. https://doi.org/10.1530/JOE-17-0263Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties
O'Harte, Finbarr P. M., Parthsarathy, Vadivel, Hogg, Christopher and Flatt, Peter R. 2017. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochemical pharmacology. https://doi.org/10.1016/j.bcp.2017.10.002Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions
O'Harte, Finbarr P. M., Parthsarathy, Vadivel, Hogg, Christopher and Flatt, Peter R. 2018. Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions. Peptides. https://doi.org/10.1016/j.peptides.2017.12.004
Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice.
O' Harte, F.P.M., Parthsarathy, V., Hogg, C and Flatt, P 2018. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLos ONE. 13 (8). https://doi.org/10.1371/journal.pone.0202350Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides
Harnedy, Pàdraigín A., Parthsarathy, Vadivel, McLaughlin, Chris M., O'Keeffe, Martina B., Allsopp, Philip J., McSorley, Emeir M., O'Harte, Finbarr P. M. and FitzGerald, Richard J. 2018. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Research International. 106, pp. 598-606. https://doi.org/10.1016/j.foodres.2018.01.025
Boarfish (Capros aper) protein hydrolysate has potent insulinotropic and GLP‐1 secretory activity in vitro and acute glucose lowering effects in mice
Parthsarathy, Vadivel, Mclaughlin, Christopher, Harnedy, Padraigin, Allsopp, Phillip, Crowe, William, McSorley, Emeir, FitzGerald, Dick and O'Harte, Finbarr 2018. Boarfish (Capros aper) protein hydrolysate has potent insulinotropic and GLP‐1 secretory activity in vitro and acute glucose lowering effects in mice. International Journal of Food Science and Technology. 54 (1), pp. 271-281. https://doi.org/10.1111/ijfs.2019.54.issue-1Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice
Millar, P., Pathak, N., Parthsarathy, V., Bjourson, A.J., O'Kane, M., Pathak, V., Moffett, R.C., Flatt, P.R. and Gault, V.A. 2017. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. The Journal of Endocrinology. 234 (3), pp. 255-267. https://doi.org/10.1530/joe-17-0263An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice
Hasib, Annie, Ng, Tony, Gault, Victor A., Khan, Dawood, Parthsarathy, Vadivel, Flatt, Peter and Irwin, Nigel 2017. An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice. Diabetologia. 60 (2017), pp. 541-552. https://doi.org/10.1007/s00125-016-4186-yBlue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties
Harnedy, Pàdraigín A., Parthsarathy, Vadivel, McLaughlin, Chris M., O'Keeffe, Martina B., Allsopp, Philip J., McSorley, Emeir M., O'Harte, Finbarr P. M. and Fitzgerald, Richard J. 2017. Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. Journal of Functional Foods. 40 (2018), pp. 137-145. https://doi.org/10.1016/j.jff.2017.10.045
Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice
Parthsarathy, Vadivel, Hogg, Christopher, Flatt, Peter R. and O'Harte, Finbarr P. M. 2017. Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice. Diabetes Obesity and Metabolism. 20 (2), pp. 319-327. https://doi.org/10.1111/dom.13068