The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease

Journal article


McClean, P.L., Parthsarathy, V,, Faivre, E. and Hölscher, C. 2011. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. The Journal of Neuroscience. 31 (17), pp. 6587-6594. https://doi.org/10.1523/jneurosci.0529-11.2011
AuthorsMcClean, P.L., Parthsarathy, V,, Faivre, E. and Hölscher, C.
Abstract

Type 2 diabetes is a risk factor for Alzheimer's disease, most likely linked to an impairment of insulin signaling in the brain. The incretin hormone glucagon-like peptide-1 (GLP-1) facilitates insulin signaling, and novel long-lasting GLP-1 analogs, such as liraglutide, are on the market as diabetes therapeutics. GLP-1 has been shown to have neuroprotective properties in vitro and in vivo. Here we tested the effects of peripherally injected liraglutide in an Alzheimer mouse model, APP(swe)/PS1(ΔE9) (APP/PS1). Liraglutide was shown to cross the blood-brain barrier in an acute study. Liraglutide was injected for 8 weeks at 25 nmol/kg body weight i.p. once daily in 7-month-old APP/PS1 and wild-type littermate controls. In APP/PS1 mice, liraglutide prevented memory impairments in object recognition and water maze tasks, and prevented synapse loss and deterioration of synaptic plasticity in the hippocampus, commonly observed in this model. Overall β-amyloid plaque count in the cortex and dense-core plaque numbers were reduced by 40-50%, while levels of soluble amyloid oligomers were reduced by 25%. The inflammation response as measured by activated microglia numbers was halved in liraglutide-treated APP/PS1 mice. Numbers of young neurons in the dentate gyrus were increased in APP/PS1 mice with treatment. Liraglutide treatment had little effect on littermate control mice, whose behavior was comparable to wild-type saline controls; however, synaptic plasticity was enhanced in the drug group. Our results show that liraglutide prevents key neurodegenerative developments found in Alzheimer's disease, suggesting that GLP-1 analogs represent a novel treatment strategy for Alzheimer's disease.

KeywordsAlzheimer's; diiabetes; insulin
Year2011
JournalThe Journal of Neuroscience
Journal citation31 (17), pp. 6587-6594
PublisherSociety for Neuroscience
ISSN1529-2401
0270-6474
Digital Object Identifier (DOI)https://doi.org/10.1523/jneurosci.0529-11.2011
Web address (URL)http://europepmc.org/abstract/med/21525299
https://www.jneurosci.org/content/31/17/6587
Output statusPublished
Publication dates01 Apr 2011
Publication process dates
Deposited26 May 2022
Permalink -

https://repository.derby.ac.uk/item/96yw6/the-diabetes-drug-liraglutide-prevents-degenerative-processes-in-a-mouse-model-of-alzheimer-s-disease

  • 21
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca PPP3/calcineurin-TFEB axis
Zummo, F.P, Krishnanda, S.I, Georgiou, M., O’Harte, F. P. M., Parthsarathy, V., Cullen, K.S, Honkanen-Scott, M, Shaw, J.A.M, Lovat, P.E and Arden, C 2021. Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca PPP3/calcineurin-TFEB axis. Autophagy. 18 (4), pp. 1-17. https://doi.org/10.1080/15548627.2021.1956123
Protein hydrolysates from boarfish (Capros aper) and Atlantic salmon (Salmo salar) skin gelatin improve metabolic control in genetically obese diabetic (ob/ob) mice
Parthsarathy, V., McLaughlin, C.M, Sharkey, S.J, Harnedy-Rothwell, P.A, Lafferty, R.A, Allsopp, P.J, McSorley, E.M, Fitzgerald, R.J and O'Harte, F.P.M 2021. Protein hydrolysates from boarfish (Capros aper) and Atlantic salmon (Salmo salar) skin gelatin improve metabolic control in genetically obese diabetic (ob/ob) mice. Journal of Food Bioactives. 16, pp. 48-57. https://doi.org/10.31665/JFB.2021.16292
Stability to thermal treatment of dipeptidyl peptidase‐IV inhibitory activity of a boarfish (Capros aper) protein hydrolysate when incorporated into tomato‐based products
Harnedy‐Rothwell, P.A., McLaughlin, C.M., Crowe, W., Allsopp, P.J., McSorley, E.M., Devaney, M., Whooley, J., McGovern, B., Parthsarathy, V., O'Harte, F.P.M. and FitzGerald, R.J. 2021. Stability to thermal treatment of dipeptidyl peptidase‐IV inhibitory activity of a boarfish (Capros aper) protein hydrolysate when incorporated into tomato‐based products. International Journal of Food Science and Technology. 56 (1), pp. 158-165. https://doi.org/10.1111/ijfs.14615
Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion
McLaughlin, C.M., Harnedy-Rothwell, P.A., Lafferty, R.A., Sharkey, S., Parthsarathy, V., Allsopp, P.J., McSorley, E.M., FitzGerald, R.J. and O'Harte, F.P.M. 2021. Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion. European Journal of Nutrition. 60 (8), pp. 4439-4452. https://doi.org/10.1007/s00394-021-02583-3
Chronic apelin analogue administration is more effective than established incretin therapies for alleviating metabolic dysfunction in diabetic db/db mice
O'Harte, Finbarr P M, Parthsarathy, Vadivel and Flatt, Peter R 2020. Chronic apelin analogue administration is more effective than established incretin therapies for alleviating metabolic dysfunction in diabetic db/db mice. Molecular and cellular endocrinology. 504, p. 110695. https://doi.org/10.1016/j.mce.2019.110695
Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice.
Parthsarathy, Vadivel, Hogg, Christopher, Flatt, Peter R. and O'Harte, Finbarr P. M. 2017. Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice. Diabetes Obesity and Metabolism. https://doi.org/10.1111/dom.13068
Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice
Millar, Paul, Pathak, Nupur, Parthsarathy, Vadivel, Bjourson, Anthony J., O'Kane, Maurice, Pathak, Varun, Moffett, Charlotte, Flatt, Peter R. and Gault, Victor A. 2017. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. Journal of Endocrinology. https://doi.org/10.1530/JOE-17-0263
Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties
O'Harte, Finbarr P. M., Parthsarathy, Vadivel, Hogg, Christopher and Flatt, Peter R. 2017. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochemical pharmacology. https://doi.org/10.1016/j.bcp.2017.10.002
Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions
O'Harte, Finbarr P. M., Parthsarathy, Vadivel, Hogg, Christopher and Flatt, Peter R. 2018. Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions. Peptides. https://doi.org/10.1016/j.peptides.2017.12.004
Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice.
O' Harte, F.P.M., Parthsarathy, V., Hogg, C and Flatt, P 2018. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLos ONE. 13 (8). https://doi.org/10.1371/journal.pone.0202350
Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides
Harnedy, Pàdraigín A., Parthsarathy, Vadivel, McLaughlin, Chris M., O'Keeffe, Martina B., Allsopp, Philip J., McSorley, Emeir M., O'Harte, Finbarr P. M. and FitzGerald, Richard J. 2018. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Research International. 106, pp. 598-606. https://doi.org/10.1016/j.foodres.2018.01.025
Boarfish (Capros aper) protein hydrolysate has potent insulinotropic and GLP‐1 secretory activity in vitro and acute glucose lowering effects in mice
Parthsarathy, Vadivel, Mclaughlin, Christopher, Harnedy, Padraigin, Allsopp, Phillip, Crowe, William, McSorley, Emeir, FitzGerald, Dick and O'Harte, Finbarr 2018. Boarfish (Capros aper) protein hydrolysate has potent insulinotropic and GLP‐1 secretory activity in vitro and acute glucose lowering effects in mice. International Journal of Food Science and Technology. 54 (1), pp. 271-281. https://doi.org/10.1111/ijfs.2019.54.issue-1
Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice
Millar, P., Pathak, N., Parthsarathy, V., Bjourson, A.J., O'Kane, M., Pathak, V., Moffett, R.C., Flatt, P.R. and Gault, V.A. 2017. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. The Journal of Endocrinology. 234 (3), pp. 255-267. https://doi.org/10.1530/joe-17-0263
An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice
Hasib, Annie, Ng, Tony, Gault, Victor A., Khan, Dawood, Parthsarathy, Vadivel, Flatt, Peter and Irwin, Nigel 2017. An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice. Diabetologia. 60 (2017), pp. 541-552. https://doi.org/10.1007/s00125-016-4186-y
Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties
Harnedy, Pàdraigín A., Parthsarathy, Vadivel, McLaughlin, Chris M., O'Keeffe, Martina B., Allsopp, Philip J., McSorley, Emeir M., O'Harte, Finbarr P. M. and Fitzgerald, Richard J. 2017. Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. Journal of Functional Foods. 40 (2018), pp. 137-145. https://doi.org/10.1016/j.jff.2017.10.045
Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice
Parthsarathy, Vadivel, Hogg, Christopher, Flatt, Peter R. and O'Harte, Finbarr P. M. 2017. Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice. Diabetes Obesity and Metabolism. 20 (2), pp. 319-327. https://doi.org/10.1111/dom.13068
Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties
O'Harte, Finbarr P M, Parthsarathy, Vadivel, Hogg, Christopher and Flatt, Peter R 2017. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochemical pharmacology. 146, pp. 165-173. https://doi.org/10.1016/j.bcp.2017.10.002
Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin
Martin, Christine M., Parthsarathy, Vadivel, Hasib, Annie, NG, Ming T., McClean, Stephen, Flatt, Peter R., Gault, Victor A. and Irwin, Nigel 2016. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin. PLos ONE. 11 (3). https://doi.org/10.1371/journal.pone.0152818
A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties
Parthsarathy, Vadivel, Irwin, Nigel, Hasib, Annie, Martin, Christine M., McClean, Stephen, Bhat, Vikas K., NG, Ming T., Flatt, Peter R. and Gault, Victor A. 2016. A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties. Biochimica et Biophysica Acta. 1860 (4), pp. 757-764. https://doi.org/10.1016/j.bbagen.2016.01.015
Xenin-25[Lys(13)PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential
Gault, Victor A., Martin, Christine M., Flatt, Peter R., Parthsarathy, Vadivel and Irwin, Nigel 2015. Xenin-25[Lys(13)PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetologica. 52 (3), pp. 461-471. https://doi.org/10.1007/s00592-014-0681-0
Characterisation of the biological activity of xenin-25 degradation fragment peptides
Martin, C.M., Parthsarathy, V., Pathak, V., Gault, V.A., Flatt, P.R. and Irwin, N. 2014. Characterisation of the biological activity of xenin-25 degradation fragment peptides. The Journal of Endocrinology. 221 (2), pp. 193-200. https://doi.org/10.1530/joe-13-0617
Correction: A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease
Parthsarathy, V., McClean, P.L., Hölscher, C., Taylor, M., Tinker, C., Jones, G., Kolosov, O., Salvati, E., Gregori, M., Masserini, M. and Allsop, D. 2013. Correction: A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease. PLos ONE. 8 (9). https://doi.org/10.1371/annotation/57e0a947-8600-4658-b04c-cf7a45c8bd8d
A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease
Parthsarathy, V., McClean, P.L., Hölscher, C., Taylor, M., Tinker, C., Jones, G., Kolosov, O., Salvati, E., Gregori, M., Masserini, M. and Allsop, D. 2013. A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. PLos ONE. 8 (1). https://doi.org/10.1371/journal.pone.0054769
Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model
Parthsarathy, V. and Hölscher, C. 2013. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. PLos ONE. 8 (3). https://doi.org/10.1371/journal.pone.0058784
The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain
Parthsarathy, Vadivel and Holscher, Christian 2013. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. European Journal of Pharmacology. 700 (1-3), pp. 42-50. https://doi.org/10.1016/j.ejphar.2012.12.012