Vadivel Parthsarathy


NameVadivel Parthsarathy
Job titleSenior Lecturer in Biomedical Health
Research instituteCollege of Science and Engineering
ORCIDhttps://orcid.org/0000-0002-2037-7804

Research outputs

Peptide Co-Agonists for Combined Activation of the APJ and GLP-1 Receptors with Insulinotropic and Satiety Actions Show Potential for Alleviation of Metabolic Dysfunction in Type 2 Diabetes †

O' Harte, S., Parthsarathy, V., Craig, S., Palmer, E. and Irwin, N. 2023. Peptide Co-Agonists for Combined Activation of the APJ and GLP-1 Receptors with Insulinotropic and Satiety Actions Show Potential for Alleviation of Metabolic Dysfunction in Type 2 Diabetes †. 1st International Meeting Molecules 4 Life. MDPI. https://doi.org/10.3390/msf2023023001

Protein hydrolysates from boarfish (Capros aper) and Atlantic salmon (Salmo salar) skin gelatin improve metabolic control in genetically obese diabetic (ob/ob) mice

Parthsarathy, V., McLaughlin, C.M, Sharkey, S.J, Harnedy-Rothwell, P.A, Lafferty, R.A, Allsopp, P.J, McSorley, E.M, Fitzgerald, R.J and O'Harte, F.P.M 2021. Protein hydrolysates from boarfish (Capros aper) and Atlantic salmon (Salmo salar) skin gelatin improve metabolic control in genetically obese diabetic (ob/ob) mice. Journal of Food Bioactives. 16, pp. 48-57. https://doi.org/10.31665/JFB.2021.16292

Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca PPP3/calcineurin-TFEB axis

Zummo, F.P, Krishnanda, S.I, Georgiou, M., O’Harte, F. P. M., Parthsarathy, V., Cullen, K.S, Honkanen-Scott, M, Shaw, J.A.M, Lovat, P.E and Arden, C 2021. Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca PPP3/calcineurin-TFEB axis. Autophagy. 18 (4), pp. 1-17. https://doi.org/10.1080/15548627.2021.1956123

Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion

McLaughlin, C.M., Harnedy-Rothwell, P.A., Lafferty, R.A., Sharkey, S., Parthsarathy, V., Allsopp, P.J., McSorley, E.M., FitzGerald, R.J. and O'Harte, F.P.M. 2021. Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion. European Journal of Nutrition. 60 (8), pp. 4439-4452. https://doi.org/10.1007/s00394-021-02583-3

Stability to thermal treatment of dipeptidyl peptidase‐IV inhibitory activity of a boarfish (Capros aper) protein hydrolysate when incorporated into tomato‐based products

Harnedy‐Rothwell, P.A., McLaughlin, C.M., Crowe, W., Allsopp, P.J., McSorley, E.M., Devaney, M., Whooley, J., McGovern, B., Parthsarathy, V., O'Harte, F.P.M. and FitzGerald, R.J. 2021. Stability to thermal treatment of dipeptidyl peptidase‐IV inhibitory activity of a boarfish (Capros aper) protein hydrolysate when incorporated into tomato‐based products. International Journal of Food Science and Technology. 56 (1), pp. 158-165. https://doi.org/10.1111/ijfs.14615

Chronic apelin analogue administration is more effective than established incretin therapies for alleviating metabolic dysfunction in diabetic db/db mice

O'Harte, Finbarr P M, Parthsarathy, Vadivel and Flatt, Peter R 2020. Chronic apelin analogue administration is more effective than established incretin therapies for alleviating metabolic dysfunction in diabetic db/db mice. Molecular and cellular endocrinology. 504, p. 110695. https://doi.org/10.1016/j.mce.2019.110695

Boarfish (Capros aper) protein hydrolysate has potent insulinotropic and GLP‐1 secretory activity in vitro and acute glucose lowering effects in mice

Parthsarathy, Vadivel, Mclaughlin, Christopher, Harnedy, Padraigin, Allsopp, Phillip, Crowe, William, McSorley, Emeir, FitzGerald, Dick and O'Harte, Finbarr 2018. Boarfish (Capros aper) protein hydrolysate has potent insulinotropic and GLP‐1 secretory activity in vitro and acute glucose lowering effects in mice. International Journal of Food Science and Technology. 54 (1), pp. 271-281. https://doi.org/10.1111/ijfs.2019.54.issue-1

Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice.

O' Harte, F.P.M., Parthsarathy, V., Hogg, C and Flatt, P 2018. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLos ONE. 13 (8). https://doi.org/10.1371/journal.pone.0202350

Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides

Harnedy, Pàdraigín A., Parthsarathy, Vadivel, McLaughlin, Chris M., O'Keeffe, Martina B., Allsopp, Philip J., McSorley, Emeir M., O'Harte, Finbarr P. M. and FitzGerald, Richard J. 2018. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Research International. 106, pp. 598-606. https://doi.org/10.1016/j.foodres.2018.01.025

Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions

O'Harte, Finbarr P. M., Parthsarathy, Vadivel, Hogg, Christopher and Flatt, Peter R. 2018. Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions. Peptides. https://doi.org/10.1016/j.peptides.2017.12.004

Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties

Harnedy, Pàdraigín A., Parthsarathy, Vadivel, McLaughlin, Chris M., O'Keeffe, Martina B., Allsopp, Philip J., McSorley, Emeir M., O'Harte, Finbarr P. M. and Fitzgerald, Richard J. 2017. Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. Journal of Functional Foods. 40 (2018), pp. 137-145. https://doi.org/10.1016/j.jff.2017.10.045

Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties

O'Harte, Finbarr P. M., Parthsarathy, Vadivel, Hogg, Christopher and Flatt, Peter R. 2017. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochemical pharmacology. https://doi.org/10.1016/j.bcp.2017.10.002

Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties

O'Harte, Finbarr P M, Parthsarathy, Vadivel, Hogg, Christopher and Flatt, Peter R 2017. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochemical pharmacology. 146, pp. 165-173. https://doi.org/10.1016/j.bcp.2017.10.002

Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice.

Parthsarathy, Vadivel, Hogg, Christopher, Flatt, Peter R. and O'Harte, Finbarr P. M. 2017. Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice. Diabetes Obesity and Metabolism. https://doi.org/10.1111/dom.13068

Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice

Parthsarathy, Vadivel, Hogg, Christopher, Flatt, Peter R. and O'Harte, Finbarr P. M. 2017. Beneficial long-term antidiabetic actions of N- and C-terminally modified analogues of apelin-13 in diet-induced obese diabetic mice. Diabetes Obesity and Metabolism. 20 (2), pp. 319-327. https://doi.org/10.1111/dom.13068

Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice

Millar, Paul, Pathak, Nupur, Parthsarathy, Vadivel, Bjourson, Anthony J., O'Kane, Maurice, Pathak, Varun, Moffett, Charlotte, Flatt, Peter R. and Gault, Victor A. 2017. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. Journal of Endocrinology. https://doi.org/10.1530/JOE-17-0263

Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice

Millar, P., Pathak, N., Parthsarathy, V., Bjourson, A.J., O'Kane, M., Pathak, V., Moffett, R.C., Flatt, P.R. and Gault, V.A. 2017. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. The Journal of Endocrinology. 234 (3), pp. 255-267. https://doi.org/10.1530/joe-17-0263

An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice

Hasib, Annie, Ng, Tony, Gault, Victor A., Khan, Dawood, Parthsarathy, Vadivel, Flatt, Peter and Irwin, Nigel 2017. An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice. Diabetologia. 60 (2017), pp. 541-552. https://doi.org/10.1007/s00125-016-4186-y

Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin

Martin, Christine M., Parthsarathy, Vadivel, Hasib, Annie, NG, Ming T., McClean, Stephen, Flatt, Peter R., Gault, Victor A. and Irwin, Nigel 2016. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin. PLos ONE. 11 (3). https://doi.org/10.1371/journal.pone.0152818

A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties

Parthsarathy, Vadivel, Irwin, Nigel, Hasib, Annie, Martin, Christine M., McClean, Stephen, Bhat, Vikas K., NG, Ming T., Flatt, Peter R. and Gault, Victor A. 2016. A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties. Biochimica et Biophysica Acta. 1860 (4), pp. 757-764. https://doi.org/10.1016/j.bbagen.2016.01.015

Xenin-25[Lys(13)PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential

Gault, Victor A., Martin, Christine M., Flatt, Peter R., Parthsarathy, Vadivel and Irwin, Nigel 2015. Xenin-25[Lys(13)PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetologica. 52 (3), pp. 461-471. https://doi.org/10.1007/s00592-014-0681-0

Characterisation of the biological activity of xenin-25 degradation fragment peptides

Martin, C.M., Parthsarathy, V., Pathak, V., Gault, V.A., Flatt, P.R. and Irwin, N. 2014. Characterisation of the biological activity of xenin-25 degradation fragment peptides. The Journal of Endocrinology. 221 (2), pp. 193-200. https://doi.org/10.1530/joe-13-0617

Correction: A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease

Parthsarathy, V., McClean, P.L., Hölscher, C., Taylor, M., Tinker, C., Jones, G., Kolosov, O., Salvati, E., Gregori, M., Masserini, M. and Allsop, D. 2013. Correction: A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease. PLos ONE. 8 (9). https://doi.org/10.1371/annotation/57e0a947-8600-4658-b04c-cf7a45c8bd8d

Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model

Parthsarathy, V. and Hölscher, C. 2013. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. PLos ONE. 8 (3). https://doi.org/10.1371/journal.pone.0058784

A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease

Parthsarathy, V., McClean, P.L., Hölscher, C., Taylor, M., Tinker, C., Jones, G., Kolosov, O., Salvati, E., Gregori, M., Masserini, M. and Allsop, D. 2013. A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. PLos ONE. 8 (1). https://doi.org/10.1371/journal.pone.0054769

The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain

Parthsarathy, Vadivel and Holscher, Christian 2013. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. European Journal of Pharmacology. 700 (1-3), pp. 42-50. https://doi.org/10.1016/j.ejphar.2012.12.012

The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease

McClean, P.L., Parthsarathy, V,, Faivre, E. and Hölscher, C. 2011. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. The Journal of Neuroscience. 31 (17), pp. 6587-6594. https://doi.org/10.1523/jneurosci.0529-11.2011
  • 706
    total views of outputs
  • 63
    total downloads of outputs
  • 3
    views of outputs this month
  • 2
    downloads of outputs this month