An active deep learning approach for minimally supervised polsar image classification
Journal article
Authors | Xue, Yong |
---|---|
Abstract | Recently, deep neural networks have received intense interests in polarimetric synthetic aperture radar (PolSAR) image classification. However, its success is subject to the availability of large amounts of annotated data which require great efforts of experienced human annotators. Aiming at improving the classification performance with greatly reduced annotation cost, this paper presents an active deep learning approach for minimally supervised PolSAR image classification, which integrates active learning and fine-tuned convolutional neural network (CNN) into a principled framework. Starting from a CNN trained using a very limited number of labeled pixels, we iteratively and actively select the most informative candidates for annotation, and incrementally fine-tune the CNN by incorporating the newly annotated pixels. Moreover, to boost the performance and robustness of the proposed method, we employ Markov random field (MRF) to enforce class label smoothness, and data augmentation technique to enlarge the training set. We conducted extensive experiments on four real benchmark PolSAR images, and experiments demonstrated that our approach achieved state-of-the-art classification results with significantly reduced annotation cost. |
Keywords | Active learning; convolutional neural network (CNN); data augmentation; fine-tuning; Markov random field (MRF); polarimetric synthetic aperture radar (PolSAR); image classification |
Year | 2019 |
Journal | IEEE Transactions on Geoscience and Remote Sensing |
Journal citation | 57 (11), pp. 9378-9395 |
Publisher | IEEE |
ISSN | 01962892 |
15580644 | |
Digital Object Identifier (DOI) | https://doi.org/10.1109/TGRS.2019.2926434 |
Web address (URL) | http://hdl.handle.net/10545/624528 |
http://creativecommons.org/licenses/by/4.0/ | |
hdl:10545/624528 | |
Publication dates | 01 Aug 2019 |
Publication process dates | |
Deposited | 25 Feb 2020, 16:44 |
Accepted | 2019 |
Rights | Attribution 4.0 International |
Contributors | University of Derby, Fudan University, Shanghai, China and X'ian Electronics and Engineering Institute, China |
File | File Access Level Open |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/923q2/an-active-deep-learning-approach-for-minimally-supervised-polsar-image-classification
Download files
50
total views0
total downloads4
views this month0
downloads this month