Polarimetric SAR image semantic segmentation with 3D discrete wavelet transform and Markov random field
Journal article
Authors | Bi, Haixia, Xu, Lin, Cao, Xiangyong, Xue, Yong and Xu, Zongben |
---|---|
Abstract | Polarimetric synthetic aperture radar (PolSAR) image segmentation is currently of great importance in image processing for remote sensing applications. However, it is a challenging task due to two main reasons. Firstly, the label information is difficult to acquire due to high annotation costs. Secondly, the speckle effect embedded in the PolSAR imaging process remarkably degrades the segmentation performance. To address these two issues, we present a contextual PolSAR image semantic segmentation method in this paper.With a newly defined channelwise consistent feature set as input, the three-dimensional discrete wavelet transform (3D-DWT) technique is employed to extract discriminative multi-scale features that are robust to speckle noise. Then Markov random field (MRF) is further applied to enforce label smoothness spatially during segmentation. By simultaneously utilizing 3D-DWT features and MRF priors for the first time, contextual information is fully integrated during the segmentation to ensure accurate and smooth segmentation. To demonstrate the effectiveness of the proposed method, we conduct extensive experiments on three real benchmark PolSAR image data sets. Experimental results indicate that the proposed method achieves promising segmentation accuracy and preferable spatial consistency using a minimal number of labeled pixels. |
Keywords | Data Science, Image Processing, AI |
Year | 2020 |
Journal | IEEE Transactions on Image Processing |
Publisher | IEEE |
ISSN | 1057-7149 |
1941-0042 | |
Digital Object Identifier (DOI) | https://doi.org/10.1109/TIP.2020.2992177 |
Web address (URL) | http://hdl.handle.net/10545/624876 |
http://creativecommons.org/licenses/by/4.0/ | |
hdl:10545/624876 | |
Publication dates | 02 Jun 2020 |
Publication process dates | |
Deposited | 05 Jun 2020, 15:52 |
Accepted | May 2020 |
Rights | Attribution 4.0 International |
Contributors | University of Derby, University of Bristol, Shanghai Em-Data Technology Co., Ltd., Xi’an Jiaotong University, Xi’an, China and University of Derby |
File | File Access Level Open |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/93z0z/polarimetric-sar-image-semantic-segmentation-with-3d-discrete-wavelet-transform-and-markov-random-field
Download files
55
total views13
total downloads2
views this month0
downloads this month
Export as
Related outputs
An Improved Geographically and Temporally Weighted Regression for Surface Ozone Estimation from Satellite-Based Precursor Data
Wang, X., Xue, Y., Sun, Y., Jin, C. and Wu, S. 2023. An Improved Geographically and Temporally Weighted Regression for Surface Ozone Estimation from Satellite-Based Precursor Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. pp. 1-14. https://doi.org/10.1109/JSTARS.2023.3327881Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data
Lu, X., Xue, Y., He, B., Jiang, X., Wu, S. and Wang, X. 2023. Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data. Atmosphere. 14 (9), pp. 1-17. https://doi.org/10.3390/atmos14091438
Improved Bi-Angle Aerosol Optical Depth Retrieval Algorithm from AHI Data Based on Particle Swarm Optimization
Jin, Chunlin, Jiang, Xingxing, Sun, Yuxin, Wu, Shuhui and Xue, Yong 2021. Improved Bi-Angle Aerosol Optical Depth Retrieval Algorithm from AHI Data Based on Particle Swarm Optimization. Remote Sensing. 13 (22), p. 4689. https://doi.org/10.3390/rs13224689
Estimation of the PM2.5 and PM10 Mass Concentration over Land from FY-4A Aerosol Optical Depth Data
Xue, Yong 2021. Estimation of the PM2.5 and PM10 Mass Concentration over Land from FY-4A Aerosol Optical Depth Data. Remote Sensing. 13 (21), p. 4276. https://doi.org/10.3390/rs13214276
COVID-19 pandemic decision support system for a population defense strategy and vaccination effectiveness
Varotsos, Costas A, Krapivin, Vladimir F, Xue, Yong, Soldatov, Vladimir and Voronova, Tatiana 2021. COVID-19 pandemic decision support system for a population defense strategy and vaccination effectiveness. Safety Science. 142, p. 105370. https://doi.org/10.1016/j.ssci.2021.105370
Nowcasting of air pollution episodes in megacities: A case study for Athens, Greece
Varotsos, Costas A., Mazei, Yuri, Saldaev, Damir, Efstathiou, Maria, Voronova, Tatiana and Xue, Yong 2021. Nowcasting of air pollution episodes in megacities: A case study for Athens, Greece. Atmospheric Pollution Research. 12 (7), p. 101099. https://doi.org/10.1016/j.apr.2021.101099
Remote sensing evaluation of total suspended solids dynamic with markov model: a case study of inland reservoir across administrative boundary in south China
Zhao, Jing, Zhang, Fujie, Chen, Shuisen, Wang, Chongyang, Chen, Jinyue, Zhou, Hui and Xue, Yong 2020. Remote sensing evaluation of total suspended solids dynamic with markov model: a case study of inland reservoir across administrative boundary in south China. Sensors. 20 (23), p. 6911. https://doi.org/10.3390/s20236911
Diagnostic model for the society safety under COVID-19 pandemic conditions
Varotsos, Costas A., Krapivin, Vladimir F. and Xue, Yong 2021. Diagnostic model for the society safety under COVID-19 pandemic conditions. Safety Science. 136, p. 105164. https://doi.org/10.1016/j.ssci.2021.105164
An experimental online judge system based on docker container for learning and teaching assistance
Yibo, Han, Zhang, Zheng, Yuan, Bo, Bi, Haixia, Shahzad, Mohammad Nasir and Liu, Lu 2020. An experimental online judge system based on docker container for learning and teaching assistance. IEEE. https://doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00264
Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites: goes-16, msg-1, msg-4, and himawari-8
Xie, Yanqing, Xue, Yong, Guang, Jie, Mei, Linlu, She, Lu, Li, Ying, Che, Yahui and Fan, Cheng 2019. Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites: goes-16, msg-1, msg-4, and himawari-8. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2019.2944949
An active deep learning approach for minimally supervised polsar image classification
Xue, Yong 2019. An active deep learning approach for minimally supervised polsar image classification. IEEE Transactions on Geoscience and Remote Sensing. 57 (11), pp. 9378-9395. https://doi.org/10.1109/TGRS.2019.2926434State-of-the-art review of 3DPV technology: structures and models
Cui, Yuanlong, Zhu, Jie, Stamatis, Zoras, Chen, Xiangjie, Bi, Haixia, Qiao, Yaning and Soleimani, Zohreh 2019. State-of-the-art review of 3DPV technology: structures and models. Energy Conversion and Management. 200, p. 112130. https://doi.org/10.1016/j.enconman.2019.112130A Heterogeneous and Interactive Big Earth Data Framework
Bi, H., Xue, Y., Merritt, P., Windmill, C. and Davis, B. 2019. A Heterogeneous and Interactive Big Earth Data Framework. 2019 International Conference on Big Data Engineering. IEEE. https://doi.org/10.1145/3341620.3341628
Big earth data: a comprehensive analysis of visualization analytics issues
Merritt, Patrick, Bi, Haixia, Davis, Bradley, Windmill, Christopher and Xue, Yong 2019. Big earth data: a comprehensive analysis of visualization analytics issues. Big Earth Data. 2 (4), pp. 321-350. https://doi.org/10.1080/20964471.2019.1576260High Performance Time Series Quantitative Retrieval from Satellite Images on a GPU Cluster
Liu, J., Xue, Y., Ren, K., Song, J., Windmill, C. and Merritt, P. 2019. High Performance Time Series Quantitative Retrieval from Satellite Images on a GPU Cluster. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12 (8). https://doi.org/10.1109/JSTARS.2019.2920077
Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data.
She, Lu, Xue, Yong, Yang, Xihua, Leys, John, Guang, Jie, Che, Yahui, Fan, Cheng, Xie, Yanqing and Li, Ying 2018. Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2018.2867000
Evaluation of the AVHRR DeepBlue aerosol optical depth dataset over mainland China.
Che, Yahui, Xue, Yong, Guang, Jie, She, Lu and Guo, Jianping 2018. Evaluation of the AVHRR DeepBlue aerosol optical depth dataset over mainland China. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2018.09.004
A physically based PM 2.5 estimation method using AERONET data in Beijing Area
Chen, Guili, Guang, Jie, Xue, Yong, Li, Ying, Che, Yahui and Gong, Shaoqi 2018. A physically based PM 2.5 estimation method using AERONET data in Beijing Area. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2018.2817243Dust detection and intensity estimation using Himawari-8/AHI observation.
She, Lu, Xue, Yong, Yang, Xihua, Guang, Jie, Li, Ying, Che, Yahui, Fan, Cheng and Xie, Yanqing 2018. Dust detection and intensity estimation using Himawari-8/AHI observation. Remote Sensing. https://doi.org/10.3390/rs10040490SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm.
She, Lu, Mei, Linlu, Xue, Yong, Che, Yahui and Guang, Jie 2017. SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm. Remote Sensing. https://doi.org/10.3390/rs9030253
Validation of aerosol products from AATSR and MERIS/AATSR synergy algorithms—Part 1: Global Evaluation.
Che, Yahui, Mei, Linlu, Xue, Yong, Guang, Jie, She, Lu and Li, Ying 2018. Validation of aerosol products from AATSR and MERIS/AATSR synergy algorithms—Part 1: Global Evaluation. Remote Sensing. https://doi.org/10.3390/rs10091414
Improved aerosol optical depth and ångstrom exponent retrieval over land From MODIS based on the non-lambertian forward model
Leiku, Yang, Xue, Yong, Guang, Jie, Hassan, Kazemian, Zhang, Jiahua and Li, Chi 2014. Improved aerosol optical depth and ångstrom exponent retrieval over land From MODIS based on the non-lambertian forward model. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2014.2303317
Using SeaWiFS measurements to evaluate radiometric stability of pseudo-invariant calibration sites at top of atmosphere
Li, Chi, Xue, Yong, Liu, Quanhua, Ouazzane, Karim and Zhang, Jiahua 2014. Using SeaWiFS measurements to evaluate radiometric stability of pseudo-invariant calibration sites at top of atmosphere. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2014.2329138
Ensemble of ESA/AATSR aerosol optical depth products based on the likelihood estimate method with uncertainties
Xie, Yanqing, Xue, Yong, Che, Yahui, Guang, Jie, Mei, Linlu, Voorhis, Dave, Fan, Cheng, She, Lu and Xu, Hui 2017. Ensemble of ESA/AATSR aerosol optical depth products based on the likelihood estimate method with uncertainties. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2017.2757910
Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe
Xue, Yong, He, Xingwei, de Leeuw, Gerrit, Mei, Linlu, Che, Yahui, Rippin, Wayne, Guang, Jie and Hu, Yincui 2017. Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2017.06.036
Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency
Liu, Jia, Feld, Dustin, Xue, Yong, Garcke, Jochen and Soddemann, Thomas 2015. Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2015.2438893
High-throughput geocomputational workflows in a grid environment
Liu, Jia, Xue, Yong, Palmer-Brown, Dominic, Chen, Ziqiang and He, Xingwei 2015. High-throughput geocomputational workflows in a grid environment. Computer. https://doi.org/10.1109/MC.2015.331