High Performance Time Series Quantitative Retrieval from Satellite Images on a GPU Cluster

Journal article


Liu, J., Xue, Y., Ren, K., Song, J., Windmill, C. and Merritt, P. 2019. High Performance Time Series Quantitative Retrieval from Satellite Images on a GPU Cluster. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12 (8). https://doi.org/10.1109/JSTARS.2019.2920077
AuthorsLiu, J., Xue, Y., Ren, K., Song, J., Windmill, C. and Merritt, P.
Abstract

The quality and accuracy of remote sensing instruments continue to increase, allowing geoscientists to perform various quantitative retrieval applications to observe the geophysical variables of land, atmosphere, ocean, etc. The explosive growth of time-series remote sensing (RS) data over large-scales poses great challenges on managing, processing, and interpreting RS ‘‘Big Data.’’ To explore these time-series RS data efficiently, in this paper, we design and implement a high-performance framework to address the time-consuming time-series quantitative retrieval issue on a graphics processing unit cluster, taking the aerosol optical depth (AOD) retrieval from satellite images as a study case. The presented framework exploits the multilevel parallelism for time-series quantitative RS retrieval to promote efficiency. At the coarse-grained level of parallelism, the AOD time-series retrieval is represented as multidirected acyclic graph workflows and scheduled based on a list-based heuristic algorithm, heterogeneous earliest finish time, taking the idle slot and priorities of retrieval jobs into account. At the fine-grained level, the parallel strategies for the major remote sensing image processing algorithms divided into three categories, i.e., the point or pixel-based operations, the local operations, and the global or irregular operations have been summarized. The parallel framework was implemented with message passing interface and compute unified device architecture, and experimental results with the AOD retrieval case verify the effectiveness of the presented framework.

Keywordsgraphics processing units; remote sensing; parallel processing; satellites; MODIS; earth; aerosols
Year2019
JournalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Journal citation12 (8)
PublisherIEEE
ISSN19391404
21511535
Digital Object Identifier (DOI)https://doi.org/10.1109/JSTARS.2019.2920077
Web address (URL)https://ieeexplore.ieee.org/document/8760407
http://hdl.handle.net/10545/624018
hdl:10545/624018
Output statusPublished
Publication datesAug 2019
Publication process dates
Accepted21 May 2019
Deposited19 Jul 2019
ContributorsUniversity of Derby
File
File Access Level
Open
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/9222y/high-performance-time-series-quantitative-retrieval-from-satellite-images-on-a-gpu-cluster

Download files

  • 50
    total views
  • 62
    total downloads
  • 2
    views this month
  • 1
    downloads this month

Export as

Related outputs

An Improved Geographically and Temporally Weighted Regression for Surface Ozone Estimation from Satellite-Based Precursor Data
Wang, X., Xue, Y., Sun, Y., Jin, C. and Wu, S. 2023. An Improved Geographically and Temporally Weighted Regression for Surface Ozone Estimation from Satellite-Based Precursor Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. pp. 1-14. https://doi.org/10.1109/JSTARS.2023.3327881
Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data
Lu, X., Xue, Y., He, B., Jiang, X., Wu, S. and Wang, X. 2023. Studying the Regional Transmission of Air Pollution Based on Spatiotemporal Multivariable Data. Atmosphere. 14 (9), pp. 1-17. https://doi.org/10.3390/atmos14091438
Note Taking in VR: The Forearm Keyboard
Davis, B., Hughes-Roberts, T. and Windmill, C. 2023. Note Taking in VR: The Forearm Keyboard. 8th International Conference on Education (EDU 2023).
Improved Bi-Angle Aerosol Optical Depth Retrieval Algorithm from AHI Data Based on Particle Swarm Optimization
Jin, Chunlin, Jiang, Xingxing, Sun, Yuxin, Wu, Shuhui and Xue, Yong 2021. Improved Bi-Angle Aerosol Optical Depth Retrieval Algorithm from AHI Data Based on Particle Swarm Optimization. Remote Sensing. 13 (22), p. 4689. https://doi.org/10.3390/rs13224689
Estimation of the PM2.5 and PM10 Mass Concentration over Land from FY-4A Aerosol Optical Depth Data
Xue, Yong 2021. Estimation of the PM2.5 and PM10 Mass Concentration over Land from FY-4A Aerosol Optical Depth Data. Remote Sensing. 13 (21), p. 4276. https://doi.org/10.3390/rs13214276
COVID-19 pandemic decision support system for a population defense strategy and vaccination effectiveness
Varotsos, Costas A, Krapivin, Vladimir F, Xue, Yong, Soldatov, Vladimir and Voronova, Tatiana 2021. COVID-19 pandemic decision support system for a population defense strategy and vaccination effectiveness. Safety Science. 142, p. 105370. https://doi.org/10.1016/j.ssci.2021.105370
Nowcasting of air pollution episodes in megacities: A case study for Athens, Greece
Varotsos, Costas A., Mazei, Yuri, Saldaev, Damir, Efstathiou, Maria, Voronova, Tatiana and Xue, Yong 2021. Nowcasting of air pollution episodes in megacities: A case study for Athens, Greece. Atmospheric Pollution Research. 12 (7), p. 101099. https://doi.org/10.1016/j.apr.2021.101099
Remote sensing evaluation of total suspended solids dynamic with markov model: a case study of inland reservoir across administrative boundary in south China
Zhao, Jing, Zhang, Fujie, Chen, Shuisen, Wang, Chongyang, Chen, Jinyue, Zhou, Hui and Xue, Yong 2020. Remote sensing evaluation of total suspended solids dynamic with markov model: a case study of inland reservoir across administrative boundary in south China. Sensors. 20 (23), p. 6911. https://doi.org/10.3390/s20236911
Diagnostic model for the society safety under COVID-19 pandemic conditions
Varotsos, Costas A., Krapivin, Vladimir F. and Xue, Yong 2021. Diagnostic model for the society safety under COVID-19 pandemic conditions. Safety Science. 136, p. 105164. https://doi.org/10.1016/j.ssci.2021.105164
Polarimetric SAR image semantic segmentation with 3D discrete wavelet transform and Markov random field
Bi, Haixia, Xu, Lin, Cao, Xiangyong, Xue, Yong and Xu, Zongben 2020. Polarimetric SAR image semantic segmentation with 3D discrete wavelet transform and Markov random field. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2020.2992177
Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites: goes-16, msg-1, msg-4, and himawari-8
Xie, Yanqing, Xue, Yong, Guang, Jie, Mei, Linlu, She, Lu, Li, Ying, Che, Yahui and Fan, Cheng 2019. Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites: goes-16, msg-1, msg-4, and himawari-8. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2019.2944949
An active deep learning approach for minimally supervised polsar image classification
Xue, Yong 2019. An active deep learning approach for minimally supervised polsar image classification. IEEE Transactions on Geoscience and Remote Sensing. 57 (11), pp. 9378-9395. https://doi.org/10.1109/TGRS.2019.2926434
A Heterogeneous and Interactive Big Earth Data Framework
Bi, H., Xue, Y., Merritt, P., Windmill, C. and Davis, B. 2019. A Heterogeneous and Interactive Big Earth Data Framework. 2019 International Conference on Big Data Engineering. IEEE. https://doi.org/10.1145/3341620.3341628
Big earth data: a comprehensive analysis of visualization analytics issues
Merritt, Patrick, Bi, Haixia, Davis, Bradley, Windmill, Christopher and Xue, Yong 2019. Big earth data: a comprehensive analysis of visualization analytics issues. Big Earth Data. 2 (4), pp. 321-350. https://doi.org/10.1080/20964471.2019.1576260
Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data.
She, Lu, Xue, Yong, Yang, Xihua, Leys, John, Guang, Jie, Che, Yahui, Fan, Cheng, Xie, Yanqing and Li, Ying 2018. Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2018.2867000
Evaluation of the AVHRR DeepBlue aerosol optical depth dataset over mainland China.
Che, Yahui, Xue, Yong, Guang, Jie, She, Lu and Guo, Jianping 2018. Evaluation of the AVHRR DeepBlue aerosol optical depth dataset over mainland China. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2018.09.004
A physically based PM 2.5 estimation method using AERONET data in Beijing Area
Chen, Guili, Guang, Jie, Xue, Yong, Li, Ying, Che, Yahui and Gong, Shaoqi 2018. A physically based PM 2.5 estimation method using AERONET data in Beijing Area. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2018.2817243
Dust detection and intensity estimation using Himawari-8/AHI observation.
She, Lu, Xue, Yong, Yang, Xihua, Guang, Jie, Li, Ying, Che, Yahui, Fan, Cheng and Xie, Yanqing 2018. Dust detection and intensity estimation using Himawari-8/AHI observation. Remote Sensing. https://doi.org/10.3390/rs10040490
SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm.
She, Lu, Mei, Linlu, Xue, Yong, Che, Yahui and Guang, Jie 2017. SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm. Remote Sensing. https://doi.org/10.3390/rs9030253
Validation of aerosol products from AATSR and MERIS/AATSR synergy algorithms—Part 1: Global Evaluation.
Che, Yahui, Mei, Linlu, Xue, Yong, Guang, Jie, She, Lu and Li, Ying 2018. Validation of aerosol products from AATSR and MERIS/AATSR synergy algorithms—Part 1: Global Evaluation. Remote Sensing. https://doi.org/10.3390/rs10091414
Improved aerosol optical depth and ångstrom exponent retrieval over land From MODIS based on the non-lambertian forward model
Leiku, Yang, Xue, Yong, Guang, Jie, Hassan, Kazemian, Zhang, Jiahua and Li, Chi 2014. Improved aerosol optical depth and ångstrom exponent retrieval over land From MODIS based on the non-lambertian forward model. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2014.2303317
Using SeaWiFS measurements to evaluate radiometric stability of pseudo-invariant calibration sites at top of atmosphere
Li, Chi, Xue, Yong, Liu, Quanhua, Ouazzane, Karim and Zhang, Jiahua 2014. Using SeaWiFS measurements to evaluate radiometric stability of pseudo-invariant calibration sites at top of atmosphere. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2014.2329138
Ensemble of ESA/AATSR aerosol optical depth products based on the likelihood estimate method with uncertainties
Xie, Yanqing, Xue, Yong, Che, Yahui, Guang, Jie, Mei, Linlu, Voorhis, Dave, Fan, Cheng, She, Lu and Xu, Hui 2017. Ensemble of ESA/AATSR aerosol optical depth products based on the likelihood estimate method with uncertainties. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2017.2757910
Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe
Xue, Yong, He, Xingwei, de Leeuw, Gerrit, Mei, Linlu, Che, Yahui, Rippin, Wayne, Guang, Jie and Hu, Yincui 2017. Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2017.06.036
Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency
Liu, Jia, Feld, Dustin, Xue, Yong, Garcke, Jochen and Soddemann, Thomas 2015. Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: Implementation, performance, and energy efficiency. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2015.2438893
High-throughput geocomputational workflows in a grid environment
Liu, Jia, Xue, Yong, Palmer-Brown, Dominic, Chen, Ziqiang and He, Xingwei 2015. High-throughput geocomputational workflows in a grid environment. Computer. https://doi.org/10.1109/MC.2015.331
An efficient geosciences workflow on multi-core processors and GPUs: a case study for aerosol optical depth retrieval from MODIS satellite data
Liu, Jia, Feld, Dustin, Xue, Yong, Garcke, Jochen, Soddemann, Thomas, Pan, Peiyuan and Fraunhofer Institute of Algorhithms and Scientific Computing 2016. An efficient geosciences workflow on multi-core processors and GPUs: a case study for aerosol optical depth retrieval from MODIS satellite data. International Journal of Digital Earth. https://doi.org/10.1080/17538947.2015.1130087
Technical note: Intercomparison of three AATSR Level 2 (L2) AOD products over China
Che, Yahui, Xue, Yong, Mei, Linlu, Guang, Jie, She, Lu, Guo, Jianping, Hu, Yincui, Xu, Hui, He, Xingwei, Di, Aojie and Fan, Cheng 2016. Technical note: Intercomparison of three AATSR Level 2 (L2) AOD products over China. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-16-9655-2016
Dust aerosol optical depth retrieval and dust storm detection for Xinjiang Region using Indian National Satellite Observations
Di, Aojie, Xue, Yong, Yang, Xihua, Leys, John, Guang, Jie, Mei, Linlu, Wang, Jingli, She, Lu, Hu, Yincui, He, Xingwei, Che, Yahui and Fan, Cheng 2016. Dust aerosol optical depth retrieval and dust storm detection for Xinjiang Region using Indian National Satellite Observations. Remote Sensing. https://doi.org/10.3390/rs8090702
Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications
Liu, Jia, Liu, Longli, Xue, Yong, Dong, Jing, Hu, Yincui, Hill, Richard, Guang, Jie and Li, Chi 2016. Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications. Computers & Geosciences. https://doi.org/10.1016/j.cageo.2016.10.002
A Hierarchical Geographically Based Routing Model for Improved Localised Routing
Windmill, C. 2014. A Hierarchical Geographically Based Routing Model for Improved Localised Routing. SIMS '14: Proceedings of the 2014 First International Conference on Systems Informatics, Modelling and Simulation. IEEE Computer Society. https://doi.org/10.5555/2681970.2682436
Aggregation Loss Bandwidth in the Last Mile Residential Internet
Windmill, C. 2014. Aggregation Loss Bandwidth in the Last Mile Residential Internet. 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation. IEEE. https://doi.org/10.1109/UKSim.2014.86
Characterisation of Large Changes in Wind Power for the Day-Ahead Market Using a Fuzzy Logic Approach
Martínez-Arellano, G., Nolle, L., Cant, R., Lotfi, A. and Windmill, C. 2014. Characterisation of Large Changes in Wind Power for the Day-Ahead Market Using a Fuzzy Logic Approach. KI-Künstliche Intelligenz. 28 (4), pp. 239-253. https://doi.org/10.1007/s13218-014-0322-3