High Performance Time Series Quantitative Retrieval from Satellite Images on a GPU Cluster
Journal article
Authors | Liu, J., Xue, Y., Ren, K., Song, J., Windmill, C. and Merritt, P. |
---|---|
Abstract | The quality and accuracy of remote sensing instruments continue to increase, allowing geoscientists to perform various quantitative retrieval applications to observe the geophysical variables of land, atmosphere, ocean, etc. The explosive growth of time-series remote sensing (RS) data over large-scales poses great challenges on managing, processing, and interpreting RS ‘‘Big Data.’’ To explore these time-series RS data efficiently, in this paper, we design and implement a high-performance framework to address the time-consuming time-series quantitative retrieval issue on a graphics processing unit cluster, taking the aerosol optical depth (AOD) retrieval from satellite images as a study case. The presented framework exploits the multilevel parallelism for time-series quantitative RS retrieval to promote efficiency. At the coarse-grained level of parallelism, the AOD time-series retrieval is represented as multidirected acyclic graph workflows and scheduled based on a list-based heuristic algorithm, heterogeneous earliest finish time, taking the idle slot and priorities of retrieval jobs into account. At the fine-grained level, the parallel strategies for the major remote sensing image processing algorithms divided into three categories, i.e., the point or pixel-based operations, the local operations, and the global or irregular operations have been summarized. The parallel framework was implemented with message passing interface and compute unified device architecture, and experimental results with the AOD retrieval case verify the effectiveness of the presented framework. |
Keywords | graphics processing units; remote sensing; parallel processing; satellites; MODIS; earth; aerosols |
Year | 2019 |
Journal | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Journal citation | 12 (8) |
Publisher | IEEE |
ISSN | 19391404 |
21511535 | |
Digital Object Identifier (DOI) | https://doi.org/10.1109/JSTARS.2019.2920077 |
Web address (URL) | https://ieeexplore.ieee.org/document/8760407 |
http://hdl.handle.net/10545/624018 | |
hdl:10545/624018 | |
Output status | Published |
Publication dates | Aug 2019 |
Publication process dates | |
Accepted | 21 May 2019 |
Deposited | 19 Jul 2019 |
Contributors | University of Derby |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/9222y/high-performance-time-series-quantitative-retrieval-from-satellite-images-on-a-gpu-cluster
Download files
46
total views60
total downloads1
views this month0
downloads this month