Head tracked audio for all - the 3D audio VR revolution
Conference Presentation
Authors | Wiggins, Bruce |
---|---|
Type | Conference Presentation |
Abstract | Virtual Reality is this year’s buzz-word and must have technology which, through the push of maximum immersion, has given a new focus and interest in true 3D audio. To this end, YouTube has kick-started the resurgence of Ambisonics via head-tracked binaural decoding on the mobile phone powered Google Cardboard platform which has been closely followed by Facebook (Two Big Ears, now Facebook Spatial Audio Workstation) and the other major VR players. In this talk, the technologies involved in 3D audio production for VR will be discussed along with the compromises and issues with current systems that has led to some early criticism of YouTube’s implementation. Google Cardboard headsets will available for demonstrations. |
Virtual Reality is this year’s buzz-word and must have technology which, through the push of maximum immersion, has given a new focus and interest in true 3D audio. To this end, YouTube has kick-started the resurgence of Ambisonics via head-tracked binaural decoding on the mobile phone powered Google Cardboard platform which has been closely followed by Facebook (Two Big Ears, now Facebook Spatial Audio Workstation) and the other major VR players. In this talk, the technologies involved in 3D audio production for VR will be discussed along with the compromises and issues with current systems that has led to some early criticism of YouTube’s implementation. Google Cardboard headsets will available for demonstrations. | |
Keywords | Virtual reality; Spatial audio; Ambisonics; Binaural; 360 video; Immersive audio |
Year | 2016 |
Publisher | Institute of Acoustics |
Web address (URL) | http://hdl.handle.net/10545/621240 |
http://creativecommons.org/licenses/by/4.0/ | |
hdl:10545/621240 | |
File | File Access Level Open |
Publication dates | 16 Nov 2016 |
Publication process dates | |
Deposited | 12 Jan 2017, 19:01 |
Contributors | University of Derby |
https://repository.derby.ac.uk/item/923z8/head-tracked-audio-for-all-the-3d-audio-vr-revolution
Download files
75
total views0
total downloads2
views this month0
downloads this month
Export as
Related outputs
A Subjective Comparison of Virtual Stereo Microphone Techniques for Rendering Ambisonics
Girijavallabhan, A. and Wiggins, B. 2024. A Subjective Comparison of Virtual Stereo Microphone Techniques for Rendering Ambisonics. Proceedings of the Institute of Acoustics. 46 (3), pp. 1-16.Dynamic characterisation of a linearised transfer function of non-ideal buck converters
Wilson, D., Bousbaine, A. and Wiggins, B. 2024. Dynamic characterisation of a linearised transfer function of non-ideal buck converters. 13th International Conference on Power Electronics, Machines and Drives (PEMD 2024). IEEE. https://doi.org/10.1049/icp.2024.2197Browser-Based Webcam Head-Tracked Ambisonics (WHAM)
Dring, M. and Wiggins, B. 2023. Browser-Based Webcam Head-Tracked Ambisonics (WHAM). 2023 Immersive and 3D Audio: from Architecture to Automotive (I3DA). IEEE. https://doi.org/10.1109/I3DA57090.2023.10289143Guitars with Ambisonic Spatial Performance (GASP) An immersive guitar system
Werner, D., Wiggins, B., Fitzmaurice, E. and Hart, M. 2022. Guitars with Ambisonic Spatial Performance (GASP) An immersive guitar system. 21st Century Guitar Conference .Capsule Calibration Approaches for Low-Cost Higher Order Ambisonic Microphone Arrays
Middlicott, C. and Wiggins, B. 2022. Capsule Calibration Approaches for Low-Cost Higher Order Ambisonic Microphone Arrays. 153rd Audio Engineering Society Convention. Audio Engineering Society.Development of an Ambisonic Guitar System
Wiggins, B., Werner, D. and Emma Fitzmaurice 2021. Development of an Ambisonic Guitar System. in: Innovation in Music London Taylor & Francis. pp. 21WHAM: To Asymmetry and Beyond!
Dring, M. and Wiggins, Bruce 2021. WHAM: To Asymmetry and Beyond! Institute of Acoustics.
The design and optimisation of surround sound decoders using heuristic methods
Wiggins, Bruce, Berry, Stuart, Lowndes, Val and Paterson-Stephens, Iain 2003. The design and optimisation of surround sound decoders using heuristic methods.
Development of an ambisonic guitar system GASP: Guitars with ambisonic spatial performance
Werner, Duncan, Wiggins, Bruce and Fitzmaurice, Emma 2021. Development of an ambisonic guitar system GASP: Guitars with ambisonic spatial performance. in: CRC Press/ Routledge.WHAM: Webcam head-tracked ambisonics
Dring, M. and Wiggins, B. 2020. WHAM: Webcam head-tracked ambisonics. Institute of Acoustics. https://doi.org/10.25144/13379Calibration approaches for higher order ambisonic microphones
Middlicott, C.J., Wiggins, B.J. and Wiggins, B. 2019. Calibration approaches for higher order ambisonic microphones. Audio Engineering Society.
The transparency of binaural auralisation using very high order circular harmonics
Dring, M. and Wiggins, Bruce 2019. The transparency of binaural auralisation using very high order circular harmonics. Institute of Acoustics.
Development of ambisonic microphone design tools – Part 1.
Middlicott, Charlie and Wiggins, Bruce 2018. Development of ambisonic microphone design tools – Part 1. Audio Engineering Society.Development of ambisonic microphone design tools - Part 1
Middlicott, C.J., Wiggins, B.J. and Wiggins, B. 2018. Development of ambisonic microphone design tools - Part 1. Audio Engineering Society.
Analysis of binaural cue matching using ambisonics to binaural decoding techniques
Wiggins, Bruce 2017. Analysis of binaural cue matching using ambisonics to binaural decoding techniques.Modelling the performance of speaker arrays in domestic listening environments.
Dring, M., Middlicott, Charlie, Wiggins, Bruce and Vilkaitis, Alex 2017. Modelling the performance of speaker arrays in domestic listening environments. Institute of Acoustics.
GASP v2: Guitars with Ambisonic Spatial Performance
Werner, Duncan, Wiggins, Bruce, Box, Charlie, Dallali, Dominic, Hooley, Jack and Middlicott, Charlie 2016. GASP v2: Guitars with Ambisonic Spatial Performance.
AmbiFreeverb 2 - Development of a 3D ambisonic reverb with spatial warping and variable scattering
Wiggins, B. and Dring, M. 2016. AmbiFreeverb 2 - Development of a 3D ambisonic reverb with spatial warping and variable scattering. Audio Engineering Society.Room acoustics and virtual reality: An implementation of auralisation and 360 degree image techniques to create virtual representations of spaces
Vilkaitis, A., Dring, M., Middlicott, C., Wiggins, B. and Hill, A.J. 2016. Room acoustics and virtual reality: An implementation of auralisation and 360 degree image techniques to create virtual representations of spaces. Institute of Acoustics.