Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein.

Journal article


Marsh, Elizabeth K., Delury, Craig P., Davies, Nicholas J., Weston, Christopher J., Miah, Mohammed A. L., Banks, Lawrence, Parish, Joanna L., Higgs, Martin R. and Roberts, Sally 2017. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein. Oncotarget. https://doi.org/10.18632/oncotarget.14469
AuthorsMarsh, Elizabeth K., Delury, Craig P., Davies, Nicholas J., Weston, Christopher J., Miah, Mohammed A. L., Banks, Lawrence, Parish, Joanna L., Higgs, Martin R. and Roberts, Sally
Abstract

The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.

KeywordsHuman papillomavirus (HPV); PDZ proteins; Cell cycle; Mitosis
Year2017
JournalOncotarget
PublisherImpact Journals
ISSN19492553
Digital Object Identifier (DOI)https://doi.org/10.18632/oncotarget.14469
Web address (URL)http://hdl.handle.net/10545/621853
hdl:10545/621853
Publication dates03 Jan 2017
Publication process dates
Deposited18 Sep 2017, 09:50
Rights

Archived with thanks to Oncotarget

ContributorsUniversity of Birmingham and International Centre for Genetic Engineering and Biotechnology
File
File Access Level
Open
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/94yq1/mitotic-control-of-human-papillomavirus-genome-containing-cells-is-regulated-by-the-function-of-the-pdz-binding-motif-of-the-e6-oncoprotein

Download files

  • 40
    total views
  • 20
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Risk factors associated with oral Human Papillomavirus (HPV) prevalence within a young adult population
Whitton, A. F, Knight, G. L. and Marsh, E. K. 2024. Risk factors associated with oral Human Papillomavirus (HPV) prevalence within a young adult population. BMC Public Health. 24 (1485), pp. 1-13. https://doi.org/10.1186/s12889-024-18977-x
Does Human Papillomavirus Play a Causative Role in Prostate Cancer? A Systematic Review Using Bradford Hill’s Criteria
Bello, R. O., Willios-Powell, L, James, O, Sharma, A, Marsh, E. K., Ellis, L, Gaston, K and Siddiqui, Y. 2023. Does Human Papillomavirus Play a Causative Role in Prostate Cancer? A Systematic Review Using Bradford Hill’s Criteria. Cancers. 15 (15), pp. 1-31. https://doi.org/10.3390/cancers15153897
Study to investigate the prevalence of human papillomavirus in Barrett’s oesophagus using a novel screening methodology
Marsh, E.K., White, J.R., Ragunath, K., Whitton, A., Kaye, P. and Knight, G.L. 2022. Study to investigate the prevalence of human papillomavirus in Barrett’s oesophagus using a novel screening methodology. BMJ Open Gastroenterology. 9, pp. 1-5. https://doi.org/10.1136/bmjgast-2021-000840
Human Papillomavirus as a Risk Factor for Oropharyngeal Squamous Cell Carcinoma
Marsh, E. 2022. Human Papillomavirus as a Risk Factor for Oropharyngeal Squamous Cell Carcinoma. in: Harding, J. J. (ed.) Care of Head and Neck Cancer Patients for Dental Hygienists and Dental Therapists Oxford Wiley. pp. 36-43
Pellino-1 regulates the responses of the airway to viral infection
Marsh, Elizabeth K, Prestwich, Elizabeth C, Marriott, Helen M, Williams, Lynne, Hart, Amber R, Muir, Claire F, Parker, Lisa C, Jonker, Marnix R, Heijink, Irene H, Timens, Wim, Fife, Mark, Hussell, Tracy, Hershenson, Marc B, Bentley, J Kelley, Sun, Shao-Cong, Barksby, Ben S, Borthwick, Lee A, Stewart, James P, Dockrell, David H and Sabroe, Ian 2020. Pellino-1 regulates the responses of the airway to viral infection. Frontiers in Cellular and Infection Microbiology. https://doi.org/10.3389/fcimb.2020.00456/full
Airway epithelial cells generate pro-inflammatory tenascin-C and small extracellular vesicles in response to TLR3 stimuli and rhinovirus infection
Mills, Jake, Schwenzer, Anja, Marsh, Elizabeth, Edwards, Michael, Midwood, Kim, Sabroe, Ian and Parker, Lisa 2019. Airway epithelial cells generate pro-inflammatory tenascin-C and small extracellular vesicles in response to TLR3 stimuli and rhinovirus infection. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2019.01987
Pellino-1 regulates immune responses to Haemophilus influenzae in models of inflammatory lung disease.
Hughes, Bethany, Burton, Charlotte, Reese, Abigail, Jabeen, Maisha, Wright, Carl, Khoshaein, Nika, Marsh, Elizabeth, Peachell, Peter, Sun, Shao-Cong, Dockrell, David, Marriott, Helen, Sabroe, Ian, Condliffe, Alison, Prince, Lynne and Willis, Jessica 2019. Pellino-1 regulates immune responses to Haemophilus influenzae in models of inflammatory lung disease. Frontiers in Immunology.
Caenorhabditis elegans, a model organism for investigating immunity.
Marsh, Elizabeth K and May, Robin C 2012. Caenorhabditis elegans, a model organism for investigating immunity. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.07486-11
The role of protein kinase A regulation of the E6 PDZ-binding domain during the differentiation-dependent life cycle of human papillomavirus type 18.
Delury, Craig P, Marsh, Elizabeth K, James, Claire D, Boon, Siaw Shi, Banks, Lawrence, Knight, Gillian L and Roberts, Sally 2013. The role of protein kinase A regulation of the E6 PDZ-binding domain during the differentiation-dependent life cycle of human papillomavirus type 18. Journal of Virology. https://doi.org/10.1128/JVI.01234-13
Targeted transgene integration overcomes variability of position effects in zebrafish.
Roberts, Jennifer Anne, Miguel-Escalada, Irene, Slovik, Katherine Joan, Walsh, Kathleen Theodora, Hadzhiev, Yavor, Sanges, Remo, Stupka, Elia, Marsh, Elizabeth Kate, Balciuniene, Jorune, Balciunas, Darius and Müller, Ferenc 2014. Targeted transgene integration overcomes variability of position effects in zebrafish. Development. https://doi.org/10.1242/dev.100347
A two-gene balance regulates Salmonella typhimurium tolerance in the nematode Caenorhabditis elegans.
Marsh, Elizabeth K, van den Berg, Maaike C W and May, Robin C 2011. A two-gene balance regulates Salmonella typhimurium tolerance in the nematode Caenorhabditis elegans. PLos ONE. https://doi.org/10.1371/journal.pone.0016839
DUSP10 negatively regulates the inflammatory response to Rhinovirus through IL-1β signalling.
Manley, Grace C. A, Stokes, Clare A, Marsh, Elizabeth K., Sabroe, Ian and Parker, Lisa C 2018. DUSP10 negatively regulates the inflammatory response to Rhinovirus through IL-1β signalling. Journal of Virology. https://doi.org/10.1128/JVI.01659-18