Simple shear behavior and constitutive modeling of 304 stainless steel over a wide range of strain rates and temperatures

Journal article


B. Jia, A. Rusinek, R. Pesci, R. Bernier, S. Bahi, A. Bendarma and Wood, P. 2021. Simple shear behavior and constitutive modeling of 304 stainless steel over a wide range of strain rates and temperatures. International Journal of Impact Engineering. https://doi.org/10.1016/j.ijimpeng.2021.103896
AuthorsB. Jia, A. Rusinek, R. Pesci, R. Bernier, S. Bahi, A. Bendarma and Wood, P.
Abstract

A novel single shear specimen (SSS) together with a correction coefficient method is used to study the deformation behavior of a 304 stainless steel under shear loadings. Shear stress-shear strain relations over a wide range of shear strain rates (0.001 to 39000 s−1) at three initial temperatures (77 to 473 K) are obtained experimentally. The effects of strain rate and temperature on the flow stress curves are determined. With increasing strain rate or temperature, the strain hardening rate decreases continuously. At the maximum strain rate of 39000 s−1, negative strain hardening rates are observed. At very high strain rates above 13000 s−1, a sharp increase in flow stress is observed, indicating a rapid rise in strain rate sensitivity. The fracture morphology of post-mortem specimens is analyzed and no well-developed adiabatic shear bands are observed. This may be due to the shear-tension stress state without hydrostatic pressure in the fracture process. Based on the experimentally obtained shear stress-shear strain curves, parameters of a modified Johnson-Cook (MJC) model are determined. A good agreement between experiments and model predictions is found, with an average error of 3.9%. Using finite element analysis, distributions of stress and strain components in the specimen shear zone is analyzed. It is found that the shear stress and shear strain play dominant roles, and a simple shear stress state with low stress triaxiality (0.015) and Lode angle parameter (0.014) is obtained.

Year2021
JournalInternational Journal of Impact Engineering
PublisherElsevier
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ijimpeng.2021.103896
Web address (URL)https://doi.org/10.1016/j.ijimpeng.2021.103896
Publication datesAug 2021
Publication process dates
Deposited25 Sep 2023
Permalink -

https://repository.derby.ac.uk/item/q1986/simple-shear-behavior-and-constitutive-modeling-of-304-stainless-steel-over-a-wide-range-of-strain-rates-and-temperatures

  • 3
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Long Sump Life Effects of a Naturally Aged Bio-Ester Oil Emulsion on Tool Wear in Finish Turning a Ni-Based Superalloy
Paul Wood, Andrew Mantle, Fathi Boud, Carter, W., Gunputh, U., Pawlik, M., Lu, Y., José Díaz-Álvarez and María Henar Miguélez Garrido Long Sump Life Effects of a Naturally Aged Bio-Ester Oil Emulsion on Tool Wear in Finish Turning a Ni-Based Superalloy. Metals. https://doi.org/10.3390/met13091610
Characterisation of impact resistance of composite reinforced by hybridised carbon-flax fibres in polyfurfuryl alcohol resin
Lu, Y., Pawlik, M., Ganapathi, S. P., Wood, P., Gunputh, U. and Le, H. 2023. Characterisation of impact resistance of composite reinforced by hybridised carbon-flax fibres in polyfurfuryl alcohol resin. The 2nd International Conference on Mechanical Automation and Engineering Materials (MAEM 2023) . IOP Publishing. https://doi.org/10.1088/1742-6596/2612/1/012013
Prediction of carbon nanotubes reinforced interphase properties in fuzzy fibre reinforced polymer via inverse analysis and optimisation
Pawlik, M., Le, H., Wood, P. and Lu, Y. 2023. Prediction of carbon nanotubes reinforced interphase properties in fuzzy fibre reinforced polymer via inverse analysis and optimisation. Computational Material Science. 231, pp. 1-11. https://doi.org/10.1016/j.commatsci.2023.112548
Microstructure Effects on the Machinability of AM-Produced Superalloys
Wood, P., Díaz-Álvarez, J., Lu, Y., Rusinek, A., Gunputh, U., Bahi, S., Díaz-Álvarez, A., Miguélez, M. H., Lu, Y., Platek, P. and Sienkiewicz, J. 2023. Microstructure Effects on the Machinability of AM-Produced Superalloys. Crystals. 13 (8), pp. 1-16. https://doi.org/10.3390/cryst13081190
Low cycle fatigue predictions of a space thruster built with a new refractory high entropy alloy
Valvano, S., Canale, G., Maligno, A. and Wood, P. 2023. Low cycle fatigue predictions of a space thruster built with a new refractory high entropy alloy. The Fourth International Conference on Damage Mechanics, Baton Rouge, Louisiana, USA, MAY 15 18, 2023.
Microstructure and geometry effects on the compressive behavior of LPBF-manufactured inconel 718 honeycomb structures
Voyiadjis, G. z., Znemah, R. A. and Paul Wood 2023. Microstructure and geometry effects on the compressive behavior of LPBF-manufactured inconel 718 honeycomb structures. Journal of Materials Research and Technology. 24, pp. 1562-1578. https://doi.org/10.1016/j.jmrt.2023.03.093
Design and Manufacture of One-Size-Fits-All Healthcare Face Shields for the NHS During the COVID-19 Pandemic
Gunputh, U., Williams, G., Leighton, A., Carter, W., Varasteh, H., Pawlik, M., Lu, Y., Sims, R., Lyons, M., Clementson, J., Tripathi, G., Nick Chambers, Matt Roe and Wood, P. 2022. Design and Manufacture of One-Size-Fits-All Healthcare Face Shields for the NHS During the COVID-19 Pandemic. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4258668
On the Lubricity and Comparative Life Cycle of Biobased Synthetic and Mineral Oil Emulsions in Machining Titanium Ti-6Al-4V at Low Cutting Speed
Wood, P., Boud, F., Carter, W., Varasteh, H., Gunputh, U., Pawlik, M., Clementson, J., Lu, Y. and Hossain, S. 2022. On the Lubricity and Comparative Life Cycle of Biobased Synthetic and Mineral Oil Emulsions in Machining Titanium Ti-6Al-4V at Low Cutting Speed. Journal of Manufacturing and material processing. 6 (6), pp. 1-16. https://doi.org/10.3390/jmmp6060154
Surface engineering of carbon fibre/epoxy composites with woven steel mesh for adhesion strength enhancement
Pawlik, M., Cheah, L.Y.Y, Gunputh, U., Le, H., Wood, P. and Lu, Y. 2022. Surface engineering of carbon fibre/epoxy composites with woven steel mesh for adhesion strength enhancement. International Journal of Adhesion and Adhesives. 114, pp. 1-8. https://doi.org/10.1016/j.ijadhadh.2022.103105
Machinability of INCONEL718 alloy with a porous microstructure produced by laser melting powder bed fusion at higher energy densities
Wood, Paul K, Díaz-Álvarez, Antonio, Díaz-Álvarez, José, Miguélez, María Henar, Rusinek, Alexis, Williams, Gavin, Bahi, Slim, Sienkiewicz, Judyta, Płatek, Paweł, Gunputh, Urvashi Fowdar and wood, paul 2020. Machinability of INCONEL718 alloy with a porous microstructure produced by laser melting powder bed fusion at higher energy densities. Materials. 13 (24). https://doi.org/10.3390/ma13245730
Off-site modular construction and design in nuclear power: A systematic literature review
Wood, P., Wrigley, P., O'Neill, S., R. Hall and D. Robertson 2021. Off-site modular construction and design in nuclear power: A systematic literature review. Progress in Nuclear Energy. https://doi.org/10.1016/j.pnucene.2021.103664
Strain Rate and Temperature Effects in Nanoindentation Testing on Hardness in Selective Laser Melting IN718
Reem Abo Znemah, George Z. Voyiadjis, Paul Wood and Edris Akbari 2021. Strain Rate and Temperature Effects in Nanoindentation Testing on Hardness in Selective Laser Melting IN718. Journal of Engineering Materials and Technology. https://doi.org/10.1115/1.4051691
Simple shear behavior of 2024-T351 aluminum alloy over a wide range of strain rates and temperatures: Experiments and constitutive modeling
Bin Jia, Alexis Rusinek, Xinke Xiao and Paul Wood 2021. Simple shear behavior of 2024-T351 aluminum alloy over a wide range of strain rates and temperatures: Experiments and constitutive modeling. International Journal of Impact Engineering. https://doi.org/10.1016/j.ijimpeng.2021.103972
High strain rate effect on tensile ductility and fracture of AM fabricated Inconel 718 with voided microstructures
Wood, P., A. Rusinek, P. Platek, Jacek Janiszewski, J. Sienkiewicz, Gunputh, U., K. Rajkowski and M.H. Miguélez 2021. High strain rate effect on tensile ductility and fracture of AM fabricated Inconel 718 with voided microstructures. Materials & Design. https://doi.org/10.1016/j.matdes.2021.109908
Additive manufacturing of graded structures in IN718
Wood, Paul and Gunputh, Urvashi 2019. Additive manufacturing of graded structures in IN718.
Selective laser melting of a high precision turbomachinery application in IN718 alloy
Wood, Paul, Gunputh, Urvashi, Williams, Gavin, Carter, Wayne, Boud, Fathi, Bahi, Slim, Rusinek, Alexis, Kowalewski, Zbigniew, Nowak, Zdzisław, Libura, Tomasz, Voyiadjis, George, Diaz-Alvarez, Jose and Miguelez, María 2021. Selective laser melting of a high precision turbomachinery application in IN718 alloy.
Analysis of machining performance of Inconel 718 printed by PBF-LM (powder bed fusion laser melting)
Diaz-Alvarez, A, Diaz-Alvarez, J, Wood, P, Gunputh, U, Rusinek, A and Miguelez, M 2021. Analysis of machining performance of Inconel 718 printed by PBF-LM (powder bed fusion laser melting).
Selective laser melting of stainless steel 316L pressure fittings
Wood, Paul 2019. Selective laser melting of stainless steel 316L pressure fittings.
Analysis of parameters influencing build accuracy of a SLM printed compressor outlet guide vane
Otubusin, Adetayo, Wood, Paul, Appleby, John and Adamczuk, Rafael 2018. Analysis of parameters influencing build accuracy of a SLM printed compressor outlet guide vane. American Society of Mechanical Engineers. https://doi.org/10.1115/GT2018-75548
Effect of element wall thickness on the homogeneity and isotropy of hardness in SLM IN718 using nanoindentation
Abo Znemah, Reem, Wood, Paul, Gunputh, Urvashi Fowdar and Zhang, Cheng 2020. Effect of element wall thickness on the homogeneity and isotropy of hardness in SLM IN718 using nanoindentation. Mechanics Research Communications. https://doi.org/10.1016/j.mechrescom.2020.103568
Influences of horizontal and vertical build orientations and post-fabrication processes on the fatigue behavior of stainless steel 316l produced by selective laser melting
Wood, Paul, Libura, Tomasz, Kowalewski, Zbigniew L., Williams, Gavin and Serjouei, Ahmad 2019. Influences of horizontal and vertical build orientations and post-fabrication processes on the fatigue behavior of stainless steel 316l produced by selective laser melting. Materials. 12 (24), p. 4203. https://doi.org/10.3390/ma12244203
A novel technique for dynamic shear testing of bulk metals with application to 304 austenitic stainless steel
Jia, B., Rusinek, A., Pesci, R., Bernier, R., Bahi, S. and Wood, P. 2020. A novel technique for dynamic shear testing of bulk metals with application to 304 austenitic stainless steel. International Journal of Solids and Structures. 204-205, pp. 153-171. https://doi.org/10.1016/j.ijsolstr.2020.08.019
Effect of powder bed fusion laser melting process parameters, build orientation and strut thickness on porosity, accuracy and tensile properties of an auxetic structure in IN718 alloy
Bahi, S., Gunputh, U., Rusinek, A., Wood, P. and Miguelez, M.H. 2020. Effect of powder bed fusion laser melting process parameters, build orientation and strut thickness on porosity, accuracy and tensile properties of an auxetic structure in IN718 alloy. Additive Manufacturing. 36, p. 101339. https://doi.org/10.1016/j.addma.2020.101339
Design for plant modularisation: nuclear and SMR.
Wrigley, Paul, Wood, Paul, Stewart, Paul, Hall, Richard and Robertson, Dan 2018. Design for plant modularisation: nuclear and SMR. 2018 26th International Conference on Nuclear Engineering Conference Proceedings. https://doi.org/10.1115/ICONE26-81760
Module layout optimization using a genetic algorithm in light water modular nuclear reactor power plants.
Wrigley, P.A., Wood, P., Stewart, Paul and Robertson, D. 2018. Module layout optimization using a genetic algorithm in light water modular nuclear reactor power plants. Nuclear Engineering and Design. https://doi.org/10.1016/j.nucengdes.2018.10.023
Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP.
Gzyl, Michal, Rosochowski, Andrzej, Pesci, Raphael, Olejnik, Lech, Yakushina, Evgenia and Wood, Paul 2013. Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP. Metallurgical and Materials Transactions A. https://doi.org/10.1007/s11661-013-2094-z
Module layout optimization using a genetic algorithm in light water modular nuclear reactor power plants.
Wrigley, P., Wood, Paul, Stewart, Paul, Hall, Richard and Robertson, D. 2018. Module layout optimization using a genetic algorithm in light water modular nuclear reactor power plants. Nuclear Engineering and Design. https://doi.org/10.1016/j.nucengdes.2018.10.023